Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Insect Sci ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37969037

RESUMO

Sex pheromones are considered to play critical roles in partner communication of most parasitic Hymenoptera. However, the identification of sex pheromone components remains limited to a few families of parasitoid wasps. In this study, we functionally characterized a candidate sex pheromone component in Microplitis mediator (Hymenoptera: Braconidae), a solitary parasitoid of Noctuidae insects. We found that the body surface extract from female wasps could significantly stimulate courtship behavior of males. Gas chromatography-electroantennographic detection (GC-EAD) analysis revealed that a candidate semiochemical from extract triggered significant electrophysiological response of antennae of males. By performing gas chromatography-mass spectrometer (GC-MS) measurement, GC-EAD active compound was identified as n-octyl acrylate, a candidate sex pheromone component in female M. mediator. In electroantennogram (EAG) tests, antennae of male wasps showed significantly higher electrophysiological responses to n-octyl acrylate than those of females. Y-tube olfactometer assays indicated that male wasps significantly chose n-octyl acrylate compared with the control. Furthermore, male wasps showed a remarkable preference for n-octyl acrylate in a simulated field condition behavioral trial; simultaneously, n-octyl acrylate standard could also trigger significant courtship behavior in males. We propose that n-octyl acrylate, as a candidate vital sex pheromone component, could be utilized to design behavioral regulators of M. mediator to implement the protection and utilization of natural enemies.

2.
Clin Proteomics ; 20(1): 24, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355563

RESUMO

BACKGROUND: Immune thrombocytopenia (ITP) is a common autoimmune disease characterized by loss of immune tolerance to platelet autoantigens leading to excessive destruction and insufficient production of platelets. METHOD: Quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed to detect the differentially expressed proteins in bone marrow samples from active ITP patients and normal controls. RESULT: Our bioinformatic analysis identified two upregulated proteins (ORM1 and vWF) and two downregulated proteins (PPBP and SPARC) related to immune function. The four proteins were all found to be related to the tumor necrosis factor (TNF) -α signalling pathway and involved in the pathogenesis of ITP in KEGG pathway analysis. CONCLUSION: Bioinformatics analysis identified differentially expressed proteins in bone marrow that are involved in the TNF-α signalling pathway and are related to the activation of immune function in ITP patients. These findings could provide new ideas for research on the loss of immune tolerance in ITP patients.

3.
Medicine (Baltimore) ; 102(7): e32947, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800582

RESUMO

BACKGROUND: Immune thrombocytopenic (ITP) is an autoimmune bleeding disease with genetic susceptibility. Twenty newly diagnosed active primary ITP patients who had not been treated with glucocorticosteroids, immune globulin or immunosuppressants prior to sampling were enrolled in this study. Bone marrow blood mononuclear cells were used for whole exome sequencing to further elucidation the variant genes of ITP. METHODS: High-molecular-weight genomic DNA was extracted from freshly frozen bone marrow blood mononuclear cells from 20 active ITP patients. Next, the samples were subjected to molecular genetic analysis by whole-exome sequencing, and the results were confirmed by Sanger sequencing. The signaling pathways and cellular processes associated with the mutated genes were identified with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. RESULTS: The results showed that there were 3998 missense mutations involving 2269 genes in more than 10 individuals. Unique genetic variants including phosphatase and tensin homolog, insulin receptor, and coagulation factor C homology were the most associated with the pathogenesis of ITP. Functional analysis revealed these mutation genes mainly affect Phosphatidylinositol 3 kinase/serine/threonine kinase B signaling pathways (signal transduction) and platelet activation (immune system). CONCLUSION: Our finding further demonstrates the functional connections between these variant genes and ITP. Although the substantial mechanism and the impact of genetic variation are required further investigation, the application of next generation sequencing in ITP in this paper is a valuable method to reveal the genetic susceptibility.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Predisposição Genética para Doença , Transdução de Sinais/genética , Mutação
4.
PLoS One ; 18(1): e0279029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656826

RESUMO

The mechanisms of Bisphenol A (BPA) induced learning and memory impairment have still not been fully elucidated. MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules involved in the process of toxicant-induced neurotoxicity. To investigate the role of miRNAs in BPA-induced learning and memory impairment, we analyzed the impacts of BPA on miRNA expression profile by high-throughput sequencing in mice hippocampus. Results showed that mice treated with BPA displayed impairments of spatial learning and memory and changes in the expression of miRNAs in the hippocampus. Seventeen miRNAs were significantly differentially expressed after BPA exposure, of these, 13 and 4 miRNAs were up- and downregulated, respectively. Bioinformatic analysis of Gene Ontology (GO) and pathway suggests that BPA exposure significantly triggered transcriptional changes of miRNAs associated with learning and memory; the top five affected pathways involved in impairment of learning and memory are: 1) Long-term depression (LTD); 2) Thyroid hormone synthesis; 3) GnRH signaling pathway; 4) Long-term potentiation (LTP); 5) Serotonergic synapse. Eight BPA-responsive differentially expressed miRNAs regulating LTP and LTD were further screened to validate the miRNA sequencing data using Real-Time PCR. The deregulation expression levels of proteins of five target genes (CaMKII, MEK1/2, IP3R, AMPAR1 and PLCß4) were investigated via western blot, for further verifying the results of gene target analysis. Our results showed that LTP and LTD related miRNAs and their targets could contribute to BPA-induced impairment of learning and memory. This study provides valuable information for novel miRNA biomarkers to detect changes in impairment of learning and memory induced by BPA exposure.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Potenciação de Longa Duração/genética , Depressão , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/genética , Aprendizagem Espacial , Biologia Computacional
5.
Nat Rev Drug Discov ; 22(3): 185-212, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36543887

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating disease caused by degeneration of motor neurons. As with all major neurodegenerative disorders, development of disease-modifying therapies has proven challenging for multiple reasons. Nevertheless, ALS is one of the few neurodegenerative diseases for which disease-modifying therapies are approved. Significant discoveries and advances have been made in ALS preclinical models, genetics, pathology, biomarkers, imaging and clinical readouts over the last 10-15 years. At the same time, novel therapeutic paradigms are being applied in areas of high unmet medical need, including neurodegenerative disorders. These developments have evolved our knowledge base, allowing identification of targeted candidate therapies for ALS with diverse mechanisms of action. In this Review, we discuss how this advanced knowledge, aligned with new approaches, can enable effective translation of therapeutic agents from preclinical studies through to clinical benefit for patients with ALS. We anticipate that this approach in ALS will also positively impact the field of drug discovery for neurodegenerative disorders more broadly.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Neurônios Motores , Descoberta de Drogas/métodos , Biomarcadores
6.
J Adv Res ; 43: 1-12, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585100

RESUMO

INTRODUCTION: The parasitoid wasp Microplitis mediator is an important natural enemy of the turnip moth Agrotis segetum and other Noctuidae pests. In our field observation, it was fortuitously discovered that sex pheromone traps used for A. segetum also attract female wasps, verified by a simulated field condition dual-choice laboratory assay. Therefore, it was hypothesized that olfactory recognition could be crucial in this process. In this regard, a female-biased odorant receptor of the wasp, MmedOR49, attracted our attention. OBJECTIVES: To unravel the significance of the female-biased MmedOR49 regulating host pheromone recognition. METHODS: Expression analysis (fluorescence in situ hybridization; quantitative realtime PCR), in vitro (two-electrode voltage-clamp recordings) and in vivo (RNAi combined with behavioral assessments) functional studies, and bioinformatics (structural modeling and molecular docking) were carried out to investigate the characteristics of MmedOR49. RESULTS: MmedOR49 expression was detected in the antennae of females by FISH. Quantification indicated that the expression level of MmedOR49 increased significantly after adult emergence. In vitro functional study revealed that MmedOR49 was specifically tuned to cis-5-decenyl acetate (Z5-10:Ac), the major sex pheromone component of A. segetum. Molecular docking showed that Z5-10:Ac strongly bound to the key amino acid residues His 80, Ile 81, and Arg 84 of MmedOR49 through hydrogen bonding. Behavioral assays indicated that female wasps were significantly attracted by Z5-10:Ac in a three-cage olfactometer. RNAi targeting further confirmed that MmedOR49 was necessary to recognize Z5-10:Ac, as female wasps lost their original behavioral responses to Z5-10:Ac after down-regulation of the MmedOR49 transcript. CONCLUSION: Although M. mediator is a larval endoparasitoid, female wasps have a behavioral preference for a sex pheromone component of lepidopteran hosts. In this behavior, for female M. mediator, MmedOR49 plays an important role in guiding the habitat of host insects. These data provide a potential target for enhancing natural enemy utilization and pest control.


Assuntos
Mariposas , Receptores Odorantes , Atrativos Sexuais , Vespas , Feminino , Animais , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Atrativos Sexuais/metabolismo , Hibridização in Situ Fluorescente , Simulação de Acoplamento Molecular , Vespas/genética , Vespas/metabolismo , Mariposas/genética , Mariposas/metabolismo
7.
Int Immunopharmacol ; 111: 109105, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930913

RESUMO

BACKGROUND: Immune thrombocytopenia (ITP) is a prevalent autoimmune disease with a complex aetiology where DNA methylation changes are becoming triggers. METHOD: To investigate novel abnormally methylated genes in the pathogenesis of ITP, we performed a high-throughput methylation analysis on 21 ITP patients and 9 normal control samples. We analysed the extent of key methylated genes and their downstream cytokines through Luminex assay or qRT-PCR. Then, bone marrow mononuclear cells were extracted from ITP patients, and decitabine (demethylation drug) was added to the culture medium of cultured cells. qRT-PCR and ELISA were used to detect whether decitabine could effectively affect target genes and related cytokines. RESULTS: Through the STRING and Metascape databases, hypermethylated NOTCH1 can be identified and can influence ITP by regulating many downstream cytokines through Th1 and Th2 cell differentiation pathways. Compared with those in the normal control group, the expression levels of NOTCH1 and its downstream Th2 cytokines (IL-4, IL-10, and GATA3) were significantly decreased and those of Th1 cytokines (IFN-γ, IL-12, and TNF-α) were significantly increased in the ITP group. Decitabine exerts its demethylation effect, so the expression of NOTCH1 and its related cytokines in the ITP group treated with 100 nM decitabine were significantly reversed. CONCLUSIONS: Our results suggest that the pathogenesis of ITP may exert its influence on epigenetics through alteration of DNA methylation at regulatory regions of the target NOTCH1 gene in the Th1 and Th2 cell differentiation pathways. At the same time, decitabine may achieve a therapeutic effect on ITP by demethylation.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Diferenciação Celular , Citocinas , Metilação de DNA , Decitabina/metabolismo , Decitabina/farmacologia , Decitabina/uso terapêutico , Humanos , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/genética , Receptor Notch1/genética , Células Th1 , Células Th2
8.
Chinese Journal of Epidemiology ; (12): 277-281, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-935382

RESUMO

Pedestrian distraction is one of the important risk factors of road injury. This review summarized the epidemiological characteristics, influencing factors, safety implications, and the published intervention measures. The review found that: a) the prevalence of pedestrian distraction poses a serious threat to pedestrian safety, but most epidemiological studies on pedestrian distraction focus on mobile phone use, and the incidence of pedestrian distraction varied greatly across studies using various research methods and from different countries; b) demographic characteristics, social psychology, and environment are the three main influencing factors of pedestrian distraction; c) distraction differently affected physiology, cognition, motion control, efficiency and behavior of pedestrian's street-crossing to some degrees, threatening the safety of pedestrian; d) engineering interventions and education were the most common interventions to prevent pedestrian distraction currently, but the effectiveness of most measures was not assessed rigorously. In the future, multidisciplinary and systematic epidemiological studies are recommended to design interventions purposely and evaluate the effectiveness of interventions through rigorous designs, providing scientific evidence for reducing pedestrian distraction and improving road safety of pedestrians.


Assuntos
Humanos , Acidentes de Trânsito/prevenção & controle , Pedestres/psicologia , Fatores de Risco , Segurança , Caminhada
9.
Cancer Cell Int ; 21(1): 548, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663331

RESUMO

BACKGROUND: Immune thrombocytopenia (ITP) is an autoimmune haemorrhagic disease whose pathogenesis is associated with bone marrow megakaryocyte maturation disorder and destruction of the haematopoietic stem cell microenvironment. METHODS: In this study, we report the qualitative and quantitative profiles of the ITP proteome. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted to elucidate the protein profiles of clinical bone marrow mononuclear cell (BMMC) samples from ITP patients and healthy donors (controls). Gene Ontology (GO) and Kyoto Encyclopaedia Genes and Genome (KEGG) pathway analyses were performed to annotate the differentially expressed proteins. A protein-protein interaction (PPI) network was constructed with the BLAST online database. Target proteins associated with autophagy were quantitatively identified by parallel reaction monitoring (PRM) analysis. RESULTS: Our approaches showed that the differentially expressed autophagy-related proteins, namely, HSPA8, PARK7, YWHAH, ITGB3 and CSF1R, were changed the most. The protein expression of CSF1R in ITP patients was higher than that in controls, while other autophagy-related proteins were expressed at lower levels in ITP patients than in controls. CONCLUSION: Bioinformatics analysis indicated that disruption of the autophagy pathway is a potential pathological mechanism of ITP. These results can provide a new direction for exploring the molecular mechanism of ITP.

10.
J Thromb Thrombolysis ; 51(4): 905-914, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33047245

RESUMO

To investigate differences in the expression of plasma proteins in immune thrombocytopenia (ITP) and normal control groups, bone marrow samples were collected from 20 active ITP patients and 20 healthy controls. Quantitative proteomics analysis based on mass spectrometry was used to measure the protein levels and understand the protein networks. We found differentially expressed proteins in ITP patients and healthy controls. Parallel reaction monitoring (PRM), a targeted proteome quantification technique, was used to quantitatively confirm the identified target proteins and verify the proteomics data. In this study, a total of 829 proteins were identified, and the fold-change cut-off was set at 1.5 (patients vs controls); a total of 26 proteins were upregulated, and 69 proteins were downregulated. The bioinformatics analysis indicated that some differentially expressed proteins were associated with apoptosis. KEGG enrichment analysis showed that the apoptosis-related proteins were closely related to the PI3K-Akt signalling pathway. PRM demonstrated that apoptosis-related proteins were significantly decreased in ITP patients, which further confirmed the important effect of apoptosis on ITP pathogenesis. We hypothesised that apoptosis may be closely related to ITP pathogenesis through the PI3K-Akt signalling pathway.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Apoptose , Proteínas de Choque Térmico HSC70 , Integrina beta3 , Peroxirredoxina VI , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
11.
Insect Sci ; 28(4): 1033-1048, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32496619

RESUMO

MicroRNAs (miRNAs), a class of non-coding single-strand RNA molecules encoded by endogenous genes, are about 21-24 nucleotides long and are involved in the post-transcriptional regulation of gene expression in plants and animals. Generally, the types and quantities of miRNAs in the different tissues of an organism are diverse, and these divergences may be related to their specific functions. Here we have identified 296 known miRNAs and 46 novel miRNAs in the antennae of the parasitoid wasp Microplitis mediator by high-throughput sequencing. Thirty-three miRNAs were predicted to target olfactory-associated genes, including odorant binding proteins (OBPs), chemosensory proteins, odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors. Among these, 17 miRNAs were significantly highly expressed in the antennae, four miRNAs were highly expressed both in the antennae and head or wings, while the remaining 12 miRNAs were mainly expressed in the head, thorax, abdomen, legs and wings. Notably, miR-9a-5p and miR-2525-3p were highly expressed in male antennae, whereas miR-1000-5p and novel-miR-13 were enriched in female antennae. The 17 miRNAs highly expressed in antennae are likely to be associated with olfaction, and were predicted to target one OBP (targeted by miR-3751-3p), one IR (targeted by miR-7-5p) and 14 ORs (targeted by 15 miRNAs including miR-6-3p, miR-9a-5p, miR-9b-5p, miR-29-5p, miR-71-5p, miR-275-3p, miR-1000-5p, miR-1000-3p, miR-2525-3p, miR-6012-3p, miR-9719-3p, novel-miR-10, novel-miR-13, novel-miR-14 and novel-miR-28). These candidate olfactory-associated miRNAs are all likely to be involved in chemoreception through the regulation of chemosensory gene expression in the antennae of M. mediator.


Assuntos
Antenas de Artrópodes/metabolismo , MicroRNAs , Olfato/genética , Vespas/genética , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes de Insetos , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores Odorantes/genética , Vespas/fisiologia
12.
Scand J Immunol ; 93(2): e12992, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33140452

RESUMO

Autophagy is a highly conserved protein degradation pathway that is essential for affecting some autoimmune diseases. Immune thrombocytopenia (ITP) is a common autoimmune disorder, and the complex dysregulation of cellular immunity has been observed; however, the relationship between autophagy-related proteins and immune responses in ITP remains unclear. Using real-time quantitative polymerase chain reaction (RT-PCR), the mRNA expression levels of Beclin-1, SQSTM1/p62 and LC3 were measured in the peripheral blood mononuclear cells (PBMCs) of 20 newly diagnosed patients with active ITP, 16 ITP patients in remission and 21 healthy volunteers. The stained Beclin-1 and SQSTM1/p62 proteins were also observed in the bone marrow of active ITP patients and normal controls by immunofluorescence. SQSTM1/p62 mRNA expression in PBMCs in newly diagnosed patients was significantly decreased. At the same time, Beclin-1 mRNA was increased significantly. During the remission stages, the levels of these autophagy-related proteins were comparable with those observed in healthy controls. Taken together, these results suggest that the aberrant expression of autophagy-related proteins might be involved in the pathogenesis of ITP. Further study of the autophagy pathway may provide a new strategy and direction for the treatment of ITP.


Assuntos
Autofagia/genética , Púrpura Trombocitopênica Idiopática/genética , Trombocitopenia/genética , Adolescente , Adulto , Idoso , Autoimunidade/genética , Proteínas Relacionadas à Autofagia/genética , Proteína Beclina-1/genética , Feminino , Humanos , Leucócitos Mononucleares/fisiologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteína Sequestossoma-1/genética , Adulto Jovem
13.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-879672

RESUMO

PURPOSE@#This research examined road traffic injury mortality and morbidity disparities across of country development status, and discussed the possibility of reducing country disparities by various actions to accelerate the pace of achieving Sustainable Development Goals target 3.6 - to halve the number of global deaths and injuries from road traffic accidents by 2020.@*METHODS@#Data for road traffic mortality, morbidity, and socio-demographic index (SDI) were extracted by country from the estimates of the Global Burden of Disease study, and the implementation of the three types of national actions (legislation, prioritized vehicle safety standards, and trauma-related post-crash care service) were extracted from the Global Status Report on Road Safety by World Health Organization. We fitted joinpoint regression analysis to identify and quantify the significant rate changes from 2011 to 2017.@*RESULTS@#Age-adjusted road traffic mortality decreased substantially for all the five SDI categories from 2011 to 2017 (by 7.52%-16.08%). Age-adjusted road traffic mortality decreased significantly as SDI increased in the study time period, while age-adjusted morbidity generally increased as SDI increased. Subgroup analysis by road user yielded similar results, but with two major differences during the study period of 2011 to 2017: (1) pedestrians in the high SDI countries experienced the lowest mortality (1.68-1.90 per 100,000 population) and morbidity (110.45-112.72 per 100,000 population for incidence and 487.48-491.24 per 100,000 population for prevalence), and (2) motor vehicle occupants in the high SDI countries had the lowest mortality (4.07-4.50 per 100,000 population) but the highest morbidity (428.74-467.78 per 100,000 population for incidence and 1025.70-1116.60 per 100,000 population for prevalence). Implementation of the three types of national actions remained nearly unchanged in all five SDI categories from 2011 to 2017 and was consistently stronger in the higher SDI countries than in the lower SDI countries. Lower income nations comprise the heaviest burden of global road traffic injuries and deaths.@*CONCLUSION@#Global road traffic deaths would decrease substantially if the large mortality disparities across country development status were reduced through full implementation of proven national actions including legislation and law enforcement, prioritized vehicle safety standards and trauma-related post-crash care services.

14.
J Int Med Res ; 48(12): 300060520976477, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33356722

RESUMO

Considerable attention has been paid to interleukin (IL)-35 because of its immunosuppressive effects in a variety of autoimmune diseases. IL-35, a recently identified cytokine of the IL-12 family, is a negative regulatory factor secreted by IL-35-inducible regulatory T cells (iTr35 cells) and the recently reported regulatory B cells (Breg cells). Four biological effects of IL-35 have been discovered in vitro and in vivo: (i) suppression of T cell proliferation; (ii) conversion of naive T cells into iTr35 cells; (iii) downregulation of type 17 helper T (Th17) cells; and (iv) conversion of Breg cells into a Breg subset that produces IL-35 and IL-10. IL-35 plays an important role in a variety of autoimmune diseases, such as rheumatoid arthritis, allergic asthma and systemic lupus erythematosus. Primary immune thrombocytopaenia (ITP), which is characterized by isolated thrombocytopaenia and mild mucocutaneous to life-threatening bleeding, is an autoimmune disease with complex dysregulation of the immune system. Both antibody-mediated and/or T cell-mediated platelet destruction are key processes. In addition, impairment of T cells and cytokine imbalances have now been recognized to be important. This review summarizes the immunomodulatory effects of IL-35 and its role in the pathogenesis of ITP as mediated by T and B cells.


Assuntos
Linfócitos B Reguladores , Púrpura Trombocitopênica Idiopática , Autoimunidade , Citocinas , Humanos , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Linfócitos T Reguladores
15.
Thromb Res ; 194: 222-228, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33213847

RESUMO

PURPOSE: Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease of unknown aetiology. In this study, we aimed to identify the mutations and aberrant expression of mucins associated with ITP pathogenesis. METHODS: First, we investigated the DNA mutation profile of bone marrow samples from patients with ITP (n = 20) by using next-generation sequencing (NGS). In addition, MUC3A, MUC5B and MUC6 were mutated in all patients with ITP. ELISA (enzyme-linked immunoassay) was used to measure MUC3A, MUC5B and MUC6 levels in the plasma of bone marrow fluid mononuclear cells (BMMCs) and peripheral blood mononuclear cells (PBMCs). Real-time quantitative PCR was used to study the mRNA expression levels of MUC3A, MUC5B and MUC6 in BMMCs and PBMCs. RESULTS: The results indicated that there were 3998 missense mutations involving 2269 genes in more than 10 individuals. MUC3A levels were not significantly different among the three groups, whereas MUC5B and MUC6 expression were significantly down-regulated in patients with ITP compared with healthy controls. In addition, serum MUC5B and MUC6 levels were significantly higher in patients with ITP in clinical remission than in patients with active ITP. CONCLUSIONS: Taken together, these results suggest that genetic alterations and the aberrant serum expression of mucins might be involved in the pathogenesis of ITP.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Leucócitos Mononucleares , Mucinas , Mutação , Púrpura Trombocitopênica Idiopática/genética
16.
Blood Coagul Fibrinolysis ; 31(8): 543-550, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33141778

RESUMO

: The occurrence and development of primary immune thrombocytopenia is closely related to autoimmune imbalanced. Thus, we conducted the current study to investigate the modulation of IL-35, a newly identified immunological self-tolerance factor on immune thrombocytopenic purpura (ITP). We were enrolled peripheral blood in 21 adult healthy volunteers, 21 active primary ITP patients and 16 ITP patients in remission. In the same period, bone marrow plasma was drawn from active primary ITP patients and 16 bone marrow donors. Enzyme-linked immunoassay was used to measure IL-35 levels in bone marrow mononuclear cells and peripheral blood mononuclear cells. Real-time quantitative PCR was used to study the mRNA expression levels of p35, Epstein-Barr virus-induced gene 3 in bone marrow mononuclear cells and peripheral blood mononuclear cells. Compared with the normal group, IL-35 levels of in ITP patients were decreased significantly. IL-35 level in bone marrow plasma was decreased more significantly than that in peripheral blood plasma at the same stage. The results showed that plasma IL-35 levels were significantly decreased in patients with active ITP compared with those of control individuals, and IL-35 levels in bone marrow plasma were decreased more significantly compared with those at the same stage. The pathogenesis of ITP is associated with decreased IL-35 levels. Further studies are needed to expand sample content and explore more in-depth investigate a possible role of IL-35 in the pathogenesis and course of ITP.


Assuntos
Medula Óssea/patologia , Subunidade p35 da Interleucina-12/sangue , Interleucinas/sangue , Púrpura Trombocitopênica Idiopática/sangue , Adulto , Idoso , Medula Óssea/metabolismo , Regulação para Baixo , Feminino , Humanos , Subunidade p35 da Interleucina-12/análise , Subunidade p35 da Interleucina-12/genética , Interleucinas/análise , Interleucinas/genética , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Púrpura Trombocitopênica Idiopática/genética , Púrpura Trombocitopênica Idiopática/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Adulto Jovem
17.
J Agric Food Chem ; 68(47): 13815-13823, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33151685

RESUMO

Plant volatiles such as floral scent compounds play a crucial role in mediating insect host locating, mate search, and oviposition sites selection. The alfalfa plant bug, Adelphocoris lineolatus (Goeze), is a seriously polyphagous herbivore of alfalfa and cotton that has an obvious preference for flowering host plants. In this study, we focused on the role of an odorant receptor AlinOR59 in the perception of plant volatiles in A. lineolatus. In situ hybridization showed that AlinOR59 was coexpressed with the coreceptor AlinORco in the ORNs cell located in the long curved sensilla trichodea on antennae of both genders. The Xenopus oocytes expression coupled with two-electrode voltage clamp recordings demonstrated that AlinOR59 responded to 15 plant volatiles. In electroantennogram assays, all of the above 15 compounds could excite electrophysiological responses in the antennae of adult bugs. Furthermore, an important floral scent compound, methyl salicylate, was utilized to evaluate the behavioral responses of A. lineolatus. It was found that adult bugs of both genders were significantly attracted to methyl salicylate. Taken together, our findings suggest that AlinOR59 plays a crucial role in the perception of floral scents in A. lineolatus and could be used as a potential target to design novel olfactory regulators for the management of bugs.


Assuntos
Heterópteros , Receptores Odorantes , Animais , Antenas de Artrópodes , Feminino , Flores/química , Proteínas de Insetos/genética , Masculino , Odorantes , Receptores Odorantes/genética , Sensilas
18.
Blood Coagul Fibrinolysis ; 31(5): 310-316, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32398462

RESUMO

: Autophagy is a conserved cellular process that involves the degradation of cytoplasmic components in eukaryotic cells. However, the correlation between autophagy and megakaryocyte development is unclear. This study aims to explore the role of autophagy in megakaryocyte differentiation. To test our hypothesis, we used the Dami cell line in-vitro experiments. Rapamycin and Bafilomycin A1 were used to stimulate Dami cells. CD41 expression and apoptosis were analysed by flow cytometry. Autophagy-related proteins were detected by Western blotting. 12-O-Tetradecanoylphorbol 13-acetate-treated Dami cells can simulate endomitosis of megakaryocytes in vitro. Rapamycin-induced autophagic cell death was verified by LC3-II conversion upregulation. Meanwhile, Bafilomycin A1 blocked endomitosis and autophagy of Dami cells. Our results provide evidence that autophagy is involved in megakaryocyte endomitosis and platelet development. Rapamycin inhibited cell viability and induced multiple cellular events, including apoptosis, autophagic cell death, and megakaryocytic differentiation, in human Dami cells. Upregulated autophagy triggered by rapamycin can promote the differentiation of Dami cells, while endomitosis is accompanied by enhanced autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Sirolimo/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Humanos , Macrolídeos/farmacologia , Megacariócitos/citologia , Glicoproteína IIb da Membrana de Plaquetas/análise
19.
Int Immunopharmacol ; 83: 106390, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193101

RESUMO

DNA methylation is the covalent addition of a methyl group to a DNA base, typically the cytosine of cytosine-phosphate-guanosine (CpG) dinucleotides. It is catalysed by methyltransferase enzymes using an S-adenosyl methionine donor, which is a heritable, stable and reversible DNA modification. Aberrant DNA methylation can influence gene expression without changing nucleotide sequences, inducing occurrence and development in autoimmune diseases, such as systemic lupus erythematosus and immune thrombocytopenia. Immune thrombocytopenia is an autoimmune disease characterised by bleeding and thrombocytopenia of peripheral blood, a normal or increased number of megakaryocytes and a maturation disorder. Recently, it was proven that aberrant DNA methylation is associated with the aetiology of immune thrombocytopenia. The defective methylation induces overexpression of methylation-related genes, such as CD70 and FOXP3, which can take part in autoreactive immune responses, and ultimately accelerated the progression of immune thrombocytopenia. Targeting the DNA methylation can be used as a new treatment for immune thrombocytopenia. As a demethylated drug, decitabine promotes megakaryocyte maturation and platelet release under the action of tumour necrosis factor-related apoptosis inducing ligand (TRAIL) promoter. This review highlights recent evidence on the role of DNA methylation in immune thrombocytopenia by describing the relationship between DNA methylation and immune thrombocytopenia, and the DNA methylation-related genes. Identifying and regulating abnormal DNA methylation provides new ideas for the diagnosis and treatment of immune thrombocytopenia.


Assuntos
Metilação de DNA/imunologia , Metiltransferases/metabolismo , Púrpura Trombocitopênica Idiopática/genética , Animais , Ligante CD27/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Humanos
20.
Chin J Integr Med ; 26(12): 947-955, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32048169

RESUMO

Although current therapeutic methods against hematological malignancies are effective in the early stage, they usually lose their effectiveness because of the development of drug resistances. Seeking new drugs with significant therapeutic effects is one of the current research hotspots. Artemisinin, an extract from the plant Artemisia annua Linne, and its derivatives have excellent antimalarial effects in clinical applications as well as excellent safety. Recent studies have documented that artemisinin and its derivatives (ARTs) also have significant effects against multiple types of tumours, including hematological malignancies. This review focuses on the latest research achievements of ARTs in the treatment of hematological malignancies as well as its mechanisms and future applications. The mechanisms of ARTs against different types of hematological malignancies mainly include cell cycle arrest, induction autophagy and apoptosis, inhibition of angiogenesis, production of reactive oxygen species, and induction of differentiation. Additionally, the review also summarizes the anticancer effects of ARTs in many drug-resistant hematological malignancies and its synergistic effects with other drugs.


Assuntos
Artemisininas/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Extratos Vegetais/farmacologia , Indutores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Artemisininas/química , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...