Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(3): 46, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912954

RESUMO

KEY MESSAGE: CaFCD1 gene regulates pepper cuticle biosynthesis. Pepper (Capsicum annuum L.) is an economically important vegetable crop that easily loses water after harvesting, which seriously affects the quality of its product. The cuticle is the lipid water-retaining layer on the outside of the fruit epidermis, which regulates the biological properties and reduces the rate of water-loss. However, the key genes involved in pepper fruit cuticle development are poorly understood. In this study, a pepper fruit cuticle development mutant fcd1 (fruit cuticle deficiency 1) was obtained by ethyl methanesulfonate mutagenesis. The mutant has great defects in fruit cuticle development, and the fruit water-loss rate of fcd1is significantly higher than that of the wild-type '8214' line. Genetic analysis suggested that the phenotype of the mutant fcd1 cuticle development defect was controlled by a recessive candidate gene CaFCD1 (Capsicum annuum fruit cuticle deficiency 1) on chromosome 12, which is mainly transcribed during fruit development. In fcd1, a base substitution within the CaFCD1 domain resulted in the premature termination of transcription, which affected cutin and wax biosynthesis in pepper fruit, as revealed by the GC-MS and RNA-seq analysis. Furthermore, the yeast one-hybrid and dual-luciferase reporter assays verified that the cutin synthesis protein CaCD2 was directly bound to the promoter of CaFCD1, suggesting that CaFCD1 may be a hub node in the cutin and wax biosynthetic regulatory network in pepper. This study provides a reference for candidate genes of cuticle synthesis and lays a foundation for breeding excellent pepper varieties.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Melhoramento Vegetal , Fenótipo , Frutas/metabolismo , Água/metabolismo , Estudos de Associação Genética , Regulação da Expressão Gênica de Plantas
2.
Front Plant Sci ; 13: 1018991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570911

RESUMO

Hydrogen peroxide (H2O2) is a regulatory component related to plant signal transduction. To better understand the genome-wide gene expression response to H2O2 stress in pepper plants, a regulatory network of H2O2 stress-gene expression in pepper leaves and roots was constructed in the present study. We collected the normal tissues of leaves and roots of pepper plants after 40 days of H2O2 treatment and obtained the RNA-seq data of leaves and roots exposed to H2O2 for 0.5-24 h. By comparing the gene responses of pepper leaves and roots exposed to H2O2 stress for different time periods, we found that the response in roots reached the peak at 3 h, whereas the response in leaves reached the peak at 24 h after treatment, and the response degree in the roots was higher than that in the leaves. We used all datasets for K-means analysis and network analysis identified the clusters related to stress response and related genes. In addition, CaEBS1, CaRAP2, and CabHLH029 were identified through a co-expression analysis and were found to be strongly related to several reactive oxygen species-scavenging enzyme genes; their homologous genes in Arabidopsis showed important functions in response to hypoxia or iron uptake. This study provides a theoretical basis for determining the dynamic response process of pepper plants to H2O2 stress in leaves and roots, as well as for determining the critical time and the molecular mechanism of H2O2 stress response in leaves and roots. The candidate transcription factors identified in this study can be used as a reference for further experimental verification.

3.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232967

RESUMO

Chili pepper is an important economic vegetable worldwide. MYB family gene members play an important role in the metabolic processes in plant growth and development. In this study, 103 pepper MYB-related members were identified and grouped into nine subfamilies according to phylogenetic relationships. Additionally, a total of 80, 20, and 37 collinear gene pairs were identified between pepper and tomato, pepper and Arabidopsis, and tomato and Arabidopsis, respectively. We performed promoter cis-element analysis and showed that CaMYB-related members may be involved in multiple biological processes such as growth and development, secondary metabolism, and circadian rhythm regulation. Expression pattern analysis indicated that CaMYB37 is significantly more enriched in fruit placenta, suggesting that this gene may be involved in capsaicin biosynthesis. Through VIGS, we confirmed that CaMYB37 is critical for the biosynthesis of capsaicin in placenta. Our subcellular localization studies revealed that CaMYB37 localized in the nucleus. On the basis of yeast one-hybrid and dual-luciferase reporter assays, we found that CaMYB37 directly binds to the promoter of capsaicin biosynthesis gene AT3 and activates its transcription, thereby regulating capsaicin biosynthesis. In summary, we systematically identified members of the CaMYB-related family, predicted their possible biological functions, and revealed that CaMYB37 is critical for the transcriptional regulation of capsaicin biosynthesis. This work provides a foundation for further studies of the CaMYB-related family in pepper growth and development.


Assuntos
Arabidopsis , Fatores de Transcrição , Arabidopsis/genética , Capsaicina/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Front Genet ; 13: 847328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295945

RESUMO

The transcription factors, B-box (BBX), belong to a subfamily of the zinc finger family of proteins and exhibit multiple biological functions in plant growth, development, and abiotic stress response pathways. In this study, a total of 23 CaBBX members were identified using the pepper reference genome database. According to the gene structure, conserved domains, and the phylogenetic tree, 23 CaBBX genes were divided into four groups, wherein the analysis of the promoter region indicated the presence of cis-acting elements related to plant development, hormones, and stress response. Interspecies collinearity analysis showed that the CaBBXs had three duplicated gene pairs, and the highest gene density was found on chromosomes 2 and 7. Transcriptome RNA-seq data and quantitative polymerase chain reaction (qRT-PCR) analysis of pepper plants spanning the entire period showed that more than half of the CaBBX genes were widely expressed in diversity tissues of pepper. Co-expression network analysis indicated that the CaBBXs and the anthocyanin structural genes had a close co-expression relationship. Thus, it was reasonably speculated that the CaBBX genes may be involved in the regulation of anthocyanin biosynthesis. Overall, this study involved the genome-wide characterization of the CaBBX family and may serve as a solid foundation for further investigations on CaBBX genes involved in the anthocyanin synthesis mechanisms and development in pepper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...