Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273262

RESUMO

We describe an experimental setup and a currently running experiment for evaluating how physical interactions over time and between individuals affect the spread of epidemics. Our experiment involves the voluntary use of the Safe Blues Android app by participants at The University of Auckland (UoA) City Campus in New Zealand. The app spreads multiple virtual safe virus strands via Bluetooth depending on the social and physical proximity of the subjects. The evolution of the virtual epidemics is recorded as they spread through the population. The data is presented as a real-time (and historical) dashboard. A simulation model is applied to calibrate strand parameters. Participants locations are not recorded, but participants are rewarded based on the duration of participation within a geofenced area, and aggregate participation numbers serve as part of the data. Once the experiment is complete, the data will be made available as an open-source anonymized dataset. This paper outlines the experimental setup, software, subject-recruitment practices, ethical considerations, and dataset description. The paper also highlights current experimental results in view of the lockdown that started in New Zealand at 23:59 on August 17, 2021. The experiment was initially planned in the New Zealand environment, expected to be free of COVID and lockdowns after 2020. However, a COVID Delta strain lockdown shuffled the cards and the experiment is currently extended into 2022. Author summaryIn this paper, we describe the Safe Blues Android app experimental setup and a currently running experiment at the University of Auckland City Campus. This experiment is designed to evaluate how physical interactions over time and between individuals affect the spread of epidemics. The Safe Blues app spreads multiple virtual safe virus strands via Bluetooth based on the subjects unobserved social and physical proximity. The app does not record the participants locations, but participants are rewarded based on the duration of participation within a geofenced area, and aggregate participation numbers serve as part of the data. When the experiment is finished, the data will be released as an open-source anonymized dataset. The experimental setup, software, subject recruitment practices, ethical considerations, and dataset description are all described in this paper. In addition, we present our current experimental results in view of the lockdown that started in New Zealand at 23:59 on August 17, 2021. The information we provide here may be useful to other teams planning similar experiments in the future.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272056

RESUMO

BackgroundWhile booster vaccinations clearly reduce the risk of severe COVID-19 and death, the impact of boosters on SARS-CoV-2 infection has not been fully characterized: doing so requires understanding their impact on asymptomatic and mildly symptomatic infections that often go unreported but nevertheless play an important role in spreading SARS-CoV-2. We sought to estimate the impact of COVID-19 booster doses on SARS-CoV-2 infection in a vaccinated population of young adults during an Omicron BA.1-predominant period. Methods and FindingsWe implemented a cohort study of young adults in a college environment (Cornell Universitys Ithaca campus) from a period when Omicron BA.1 was the predominant SARS-CoV-2 variant on campus (December 5 to December 31, 2021). Participants included 15,800 university students who completed an initial vaccination series with a vaccine approved by the World Health Organization for emergency use, were enrolled in mandatory at-least-weekly surveillance PCR testing, and had no positive SARS-CoV-2 PCR test within 90 days before the start of the study period. Robust multivariable Poisson regression with the main outcome of a positive SARS-CoV-2 PCR test was performed to compare those who completed their initial vaccination series and a booster dose to those without a booster dose. 1,926 unique SARS-CoV-2 infections were identified in the study population. Controlling for sex, student group membership, date of completion of initial vaccination series, initial vaccine type, and temporal effect during the study period, our analysis estimates that receiving a booster dose further reduces the rate of having a PCR-detected SARS-CoV-2 infection relative to an initial vaccination series by 56% (95% confidence interval [42%, 67%], P <0.001). While most individuals had recent booster administration before or during the study period (a limitation of our study), this result is robust to the assumed delay over which a booster dose becomes effective (varied from 1 day to 14 days). The mandatory active surveillance approach used in this study, under which 86% of the person-days in the study occurred, reduces the likelihood of outcome mis-classification. Key limitations of our methodology are that we did not have an a priori protocol or statistical analysis plan because the analysis was initially done for institutional research purposes, and some analysis choices were made after observing the data. ConclusionsWe observed that boosters are effective, relative to completion of initial vaccination series, in further reducing the rate of SARS-CoV-2 infections in a college student population during a period when Omicron BA.1 was predominant; booster vaccinations for this age group may play an important role in reducing incidence of COVID-19.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20090258

RESUMO

How do fine modifications to social distancing measures really affect COVID-19 spread? A major problem for health authorities is that we do not know. In an imaginary world, we might develop a harmless biological virus that spreads just like COVID-19, but is traceable via a cheap and reliable diagnosis. By introducing such an imaginary virus into the population and observing how it spreads, we would have a way of learning about COVID-19 because the benign virus would respond to population behaviour and social distancing measures in a similar manner. Such a benign biological virus does not exist. Instead, we propose a safe and privacy-preserving digital alternative. Our solution is to mimic the benign virus by passing virtual tokens between electronic devices when they move into close proximity. As Bluetooth transmission is the most likely method used for such inter-device communication, and as our suggested "virtual viruses" do not harm individuals software or intrude on privacy, we call these Safe Blues. In contrast to many app-based methods that inform individuals or governments about actual COVID-19 patients or hazards, Safe Blues does not provide information about individuals locations or contacts. Hence the privacy concerns associated with Safe Blues are much lower than other methods. However, from the point of view of data collection, Safe Blues has two major advantages: O_LIData about the spread of Safe Blues is uploaded to a central server in real time, which can give authorities a more up-to-date picture in comparison to actual COVID-19 data, which is only available retrospectively. C_LIO_LISampling of Safe Blues data is not biased by being applied only to people who have shown symptoms or who have come into contact with known positive cases. C_LI These features mean that there would be real statistical value in introducing Safe Blues. In the medium term and end game of COVID-19, information from Safe Blues could aid health authorities to make informed decisions with respect to social distancing and other measures. In this paper we outline the general principles of Safe Blues and we illustrate how Safe Blues data together with neural networks may be used to infer characteristics of the progress of the COVID-19 pandemic in real time. Further information is on the Safe Blues website: https://safeblues.org/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...