Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(15)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37566014

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease of arteries fueled by lipids. It is a major cause of cardiovascular morbidity and mortality. Mesenchymal stem cells have been used for the treatment of atherosclerotic lesions. Adipose-derived stem cells (ADSCs) have been shown to regulate the activation state of macrophages and exhibit anti-inflammatory capabilities. However, the effect of allogeneic ADSCs in the treatment of AS have not been investigated. In this study, the early treatment effect and preliminary mechanism analysis of allogeneic rabbit ADSCs intravenous transplantation were investigated in a high-fat diet rabbit model. The polarization mechanism of rabbit ADSCs on the macrophage was further analyzed in vitro. Compared with the model group, blood lipid levels declined, the plaque area, oxidized low-density lipoprotein (ox-LDL) uptake, scavenger receptor A1 and cluster of differentiation (CD) 36 levels were all significantly reduced, and the accumulation of inflammatory M1 macrophages, apoptosis, interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression were decreased. The endothelial cells (CD31), M2 macrophages, IL-10 and the transforming growth factor (TGF)-ß levels increased. In vitro, ADSCs can promote the M1 macrophage phenotypic switch toward the M2 macrophage through their secreted exosomes, and the main mechanism includes increasing arginase 1 expression and IL-10 secretion, declining inducible nitric oxide synthase (iNOS) expression and TNF-α secretion, and activating the STAT6 pathway. Therefore, allogeneic rabbit ADSC transplantation can transmigrate to the aortic atherosclerotic plaques and show a good effect in lowering blood lipids and alleviating atherosclerotic plaque in the early stage of AS by inhibiting ox-LDL uptake, inflammatory response, and endothelial damage.


Assuntos
Aterosclerose , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Placa Aterosclerótica , Animais , Coelhos , Placa Aterosclerótica/terapia , Placa Aterosclerótica/metabolismo , Interleucina-10/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/metabolismo , Lipoproteínas LDL/metabolismo , Inflamação , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células-Tronco Mesenquimais/metabolismo , Lipídeos
2.
Signal Transduct Target Ther ; 7(1): 124, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436986

RESUMO

Variants of concern (VOCs) like Delta and Omicron, harbor a high number of mutations, which aid these viruses in escaping a majority of known SARS-CoV-2 neutralizing antibodies (NAbs). In this study, Rhesus macaques immunized with 2-dose inactivated vaccines (Coronavac) were boosted with an additional dose of homologous vaccine or an RBD-subunit vaccine, or a bivalent inactivated vaccine (Beta and Delta) to determine the effectiveness of sequential immunization. The booster vaccination significantly enhanced the duration and levels of neutralizing antibody titers against wild-type, Beta, Delta, and Omicron. Animals administered with an indicated booster dose and subsequently challenged with Delta or Omicron variants showed markedly reduced viral loads and improved histopathological profiles compared to control animals, indicating that sequential immunization could protect primates against Omicron. These results suggest that sequential immunization of inactivated vaccines or polyvalent vaccines could be a potentially effective countermeasure against newly emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Macaca mulatta , SARS-CoV-2/genética , Vacinação , Vacinas de Produtos Inativados/genética
3.
Stem Cell Res Ther ; 12(1): 407, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266502

RESUMO

BACKGROUND: Atherosclerosis (AS) is a complex disease caused in part by dyslipidemia and chronic inflammation. AS is associated with serious cardiovascular disease and remains the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) have evolved as an attractive therapeutic agent in various diseases including AS. Human umbilical cord MSCs (UCSCs) have been used in cell therapy trials due to their ability to differentiate and proliferate. The present study aimed to investigate the effect of UCSCs treatment on atherosclerotic plaque formation and the progression of lesions in a high-fat diet rabbit model. METHODS: Rabbits were fed a high-fat diet and then randomly divided into three groups: control, model, and treatment groups. Rabbits in the treatment group were injected with UCSCs (6 × 106 in 500 µL phosphate buffered saline) after 1 month of high-fat diet, once every 2 weeks, for 3 months. The model group was given PBS only. We analyzed serum biomarkers, used ultrasound and histopathology to detect arterial plaques and laser Doppler imaging to measure peripheral blood vessel blood filling, and analyzed the intestinal flora and metabolism. RESULTS: Histological analysis showed that the aortic plaque area was significantly reduced in the treatment group. We also found a significant decrease in macrophage accumulation and apoptosis, an increase in expression of scavenger receptors CD36 and SRA1, a decrease in uptake of modified low-density protein (ox-LDL), and a decrease in levels of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α following UCSCs treatment. We also found that anti-inflammatory cytokines IL-10 and transforming growth factor (TGF)-ß expression increased in the aorta atherosclerotic plaque of the treatment group. UCSCs treatment improved the early peripheral blood filling, reduced the serum lipid level, and inhibited inflammation progression by regulating the intestinal flora dysbiosis caused by the high-fat diet. More specifically, levels of the microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) were down-regulated in the treatment group. CONCLUSIONS: UCSCs treatment alleviated atherosclerotic plaque burden by reducing inflammation, regulating the intestinal flora and TMAO levels, and repairing the damaged endothelium.


Assuntos
Células-Tronco Mesenquimais , Placa Aterosclerótica , Animais , Aorta , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Placa Aterosclerótica/terapia , Coelhos , Cordão Umbilical
4.
Nutr Metab Cardiovasc Dis ; 31(6): 1929-1938, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992512

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is characterized by lipid deposition, oxidative stress, and inflammation in the arterial intima. Ganoderma lucidum triterpenoids (GLTs) and polysaccharides (GLPs) are traditional Chinese medicines with potential cardiovascular benefits. We aimed to comprehensively evaluate the effect of GLTs and GLPs on atherosclerosis and the associated underlying mechanisms in vivo and in vitro. METHODS AND RESULTS: Japanese big-ear white rabbits were randomly divided into three groups of blank, model, and treatment, and the treatment group was fed with GLSO and GLSP (0.3 g/kg body-weight/day) for 4 months. Serum levels of triglyceride (TG), total (TC), and low density lipoprotein cholesterol (LDL-C) in GL treatment group were significantly lower than those in the model group. The area of aortic plaques was significantly reduced in the treatment group. Further, GL administration in oxidized low-density lipoprotein (ox-LDL) stimulated human umbilical vein endothelial cells (HUVECs) reduced the generation of reactive oxygen species (ROS) and malondialdehyde (MDA) by inhibiting the upregulation of the nuclear transcription factor (NF)-κB p65 and the relative receptor LOX-1. In THP-1 cells treated with phorbol myristate acetate, GL inhibited the inflammatory polarization of macrophages (as evidenced by reduced TNF-α levels) via regulation of Notch1 and DLL4 pathways. Ox-LDL-stimulated THP-1 cells treated with GL showed an increase in the apoptosis of foam cells. CONCLUSIONS: GLTs and GLPs attenuated the progression of atherosclerosis by alleviating endothelial dysfunction and inflammatory polarization of macrophages, thus promoting apoptosis of foam cells.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Células Espumosas/efeitos dos fármacos , Placa Aterosclerótica , Polissacarídeos/farmacologia , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apoptose/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/patologia , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Células Espumosas/metabolismo , Células Espumosas/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/isolamento & purificação , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Reishi/química , Células THP-1 , Triterpenos/isolamento & purificação
5.
Sci Rep ; 10(1): 16628, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024229

RESUMO

Experimental animals including the ferret, marmoset, woodchuck, mini pig, and tree shrew have been used in biomedical research. However, their gut microbiota have not been fully investigated. In this study, the gut microbiota of these five experimental animals were analyzed with 16S rRNA sequencing. The phyla Firmicutes, Bacteroidetes, and Fusobacteria were present in the gut microbiota of all the species. Specific phyla were present in different animals: Proteobacteria in the ferret, Tenericutes in the marmoset, and Spirochaetes in the mini pig. Fusobacterium and unidentified Clostridiales were the dominant genera in the ferret, whereas Libanicoccus, Lactobacillus, Porphyromonas, and Peptoclostridium were specific to marmoset, mini pig, woodchuck, and tree shrew, respectively. A clustering analysis showed that the overall distribution of microbial species in the guts of these species mirrored their mammalian phylogeny, and the microbiota of the marmoset and tree shrew showed the closest bray_curtis distances to that of humans. PICRUSt functional prediction separated the woodchuck from the other species, which may reflect its herbivorous diet. In conclusion, both the evolutionary phylogeny and daily diet affect the gut microbiota of these experimental animals, which should not be neglected for their usage in biomedical research.


Assuntos
Animais de Laboratório/microbiologia , Callithrix/microbiologia , Dieta/veterinária , Fezes/microbiologia , Furões/microbiologia , Microbioma Gastrointestinal , Marmota/microbiologia , Porco Miniatura/microbiologia , Tupaiidae/microbiologia , Animais , Feminino , Microbioma Gastrointestinal/genética , Masculino , Filogenia , RNA Ribossômico 16S , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...