Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38540728

RESUMO

Phytoplasma disease is one of the most serious infectious diseases that affects the growth and development of mulberry. Long non-coding RNAs (lncRNAs) play an important role in plants' defense systems; however, the contribution of lncRNAs in the response to phytoplasma infection in mulberry is still largely unknown. Herein, strand-specific RNA sequencing was performed to profile the mRNAs and lncRNAs involved in the response to phytoplasma infection in mulberry, and a total of 4169 genes were found to be differentially expressed (DE) between healthy and phytoplasma-infected leaves. Moreover, 1794 lncRNAs were identified, of which 742 lncRNAs were DE between healthy and infected leaves. Target prediction showed that there were 68 and 44 DE lncRNAs which may function as cis and trans-regulators, targeting 54 and 44 DE genes, respectively. These DE target genes are associated with biological processes such as metabolism, signaling, development, transcriptional regulation, etc. In addition, it was found that the expression of the antisense lncRNA (MuLRR-RLK-AS) of the leucine-rich repeat receptor-like protein kinase gene (MuLRR-RLK) was decreased in the phytoplasma-infected leaves. Interestingly, it was found that overexpression of MuLRR-RLK-AS can inhibit the expression of MuLRR-RLK. Moreover, it was found that the expression levels of PTI-related and MAPK genes in the transgenic MuLRR-RLK Arabidopsis plants were significantly higher than those in the wild-type plants when inoculated with pathogens, and the transgenic plants were conferred with strong disease resistance. Our results demonstrate that MuLRR-RLK-AS, as a trans-regulatory factor, can inhibit the expression of the MuLRR-RLK gene and is a negative regulatory factor for mulberry resistance. The information provided is particularly useful for understanding the functions and mechanisms of lncRNAs in the response to phytoplasma infection in mulberry.


Assuntos
Morus , RNA Longo não Codificante , Redes Reguladoras de Genes , Doenças por Fitoplasmas , RNA Longo não Codificante/genética , Morus/genética , Morus/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plantas Geneticamente Modificadas/genética , Perfilação da Expressão Gênica
2.
Genes (Basel) ; 14(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37895261

RESUMO

Galactitol synthetase (GolS) as a key enzyme in the raffinose family oligosaccharides (RFOs) biosynthesis pathway, which is closely related to stress. At present, there are few studies on GolS in biological stress. The expression of MnGolS2 gene in mulberry was increased under Botrytis cinerea infection. The MnGolS2 gene was cloned and ectopically expressed in Arabidopsis. The content of MDA in leaves of transgenic plants was decreased and the content of CAT was increased after inoculation with B. cinerea. In this study, the role of MnGolS2 in biotic stress was demonstrated for the first time. In addition, it was found that MnGolS2 may increase the resistance of B. cinerea by interacting with other resistance genes. This study offers a crucial foundation for further research into the role of the GolS2 gene.


Assuntos
Arabidopsis , Morus , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Morus/genética , Rafinose/metabolismo , Arabidopsis/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362160

RESUMO

Six α-amylase/subtilisin inhibitor genes (MnASIs) were identified from mulberry (Morus notabilis). In this study, bioinformatics and expression pattern analysis of six MnASIs were performed to determine their roles in resistance to B. cinerea. The expression of all six MnASIs was significantly increased under Botrytis cinerea infection. MnASI1, which responded strongly to B. cinerea, was overexpressed in Arabidopsis and mulberry. The resistance of Arabidopsis and mulberry overexpressing MnASI1 gene to B. cinerea was significantly improved, the catalase (CAT) activity was increased, and the malondialdehyde (MDA) content was decreased after inoculation with B. cinerea. At the same time, H2O2 and O2- levels were reduced in MnASI1 transgenic Arabidopsis, reducing the damage of ROS accumulation to plants. In addition, MnASI1 transgenic Arabidopsis increased the expression of the salicylic acid (SA) pathway-related gene AtPR1. This study provides an important reference for further revealing the function of α-amylase/subtilisin inhibitors.


Assuntos
Arabidopsis , Morus , Arabidopsis/genética , Arabidopsis/metabolismo , Morus/genética , Morus/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/genética , Botrytis/metabolismo , Subtilisinas/metabolismo , alfa-Amilases/genética , alfa-Amilases/metabolismo , Resistência à Doença/genética
4.
Plant Mol Biol ; 104(6): 583-595, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32901412

RESUMO

KEY MESSAGE: Mapping QTL for stem-related traits using RIL population with ultra-high density bin map can better dissect pleiotropic QTL controlling stem architecture that can provide valuable information for maize genetic improvement. The maize stem is one of the most important parts of the plant and is also a component of many agronomic traits in maize. This study aimed to advance our understanding of the genetic mechanisms underlying maize stem traits. A recombinant inbred line (RIL) population derived from a cross between Ye478 and Qi319 was used to identify quantitative trait loci (QTL) controlling stem height (SH), ear height (EH), stem node number (SN), ear node (EN), and stem diameter (SD), and two derived traits (ear height coefficient (EHc) and ear node coefficient (ENc)). Using an available ultra-high density bin map, 46 putative QTL for these traits were detected on chromosomes 1, 3, 4, 5, 6, 7, 8, and 10. Individual QTL explained 3.5-17.7% of the phenotypic variance in different environments. Two QTL for SH, three for EH, two for EHc, one for SN, one for EN, and one for SD were detected in more than one environment. QTL with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1, 3, 4, 6, 8, and 10, which are potential target regions for fine-mapping and marker-assisted selection in maize breeding programs. Further, we discussed segregation of bin markers (mk1630 and mk4452) associated with EHc QTL in the RIL population. We had identified two putative WRKY DNA-binding domain proteins, AC209050.3_FG003 and GRMZM5G851490, and a putative auxin response factor, GRMZM2G437460, which might be involved in regulating plant growth and development, as candidate genes for the control of stem architecture.


Assuntos
Cromossomos de Plantas , Caules de Planta/genética , Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Variação Genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...