Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3123, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600179

RESUMO

Stretchable neuromorphic optoelectronics present tantalizing opportunities for intelligent vision applications that necessitate high spatial resolution and multimodal interaction. Existing neuromorphic devices are either stretchable but not reconcilable with multifunctionality, or discrete but with low-end neurological function and limited flexibility. Herein, we propose a defect-tunable viscoelastic perovskite film that is assembled into strain-insensitive quasi-continuous microsphere morphologies for intrinsically stretchable neuromorphic vision-adaptive transistors. The resulting device achieves trichromatic photoadaptation and a rapid adaptive speed (<150 s) beyond human eyes (3 ~ 30 min) even under 100% mechanical strain. When acted as an artificial synapse, the device can operate at an ultra-low energy consumption (15 aJ) (far below the human brain of 1 ~ 10 fJ) with a high paired-pulse facilitation index of 270% (one of the best figures of merit in stretchable synaptic phototransistors). Furthermore, adaptive optical imaging is achieved by the strain-insensitive perovskite films, accelerating the implementation of next-generation neuromorphic vision systems.

2.
Angew Chem Int Ed Engl ; 63(9): e202317876, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38193266

RESUMO

Constructing uniform covalent organic framework (COF) film on substrates for electronic devices is highly desirable. Here, a simple and mild strategy is developed to prepare them by polymerization on a solid-liquid interface. The universality of the method is confirmed by the successful preparation of five COF films with different microstructures. These films have large lateral size, controllable thickness, and high crystalline quality. And COF patterns can also be directly achieved on substrates via hydrophilic and hydrophobic interface engineering, which is in favor of preparing device array. For application studies, the PyTTA-TPA (PyTTA: 4,4',4'',4'''-(1,3,6,8-Tetrakis(4-aminophenyl)pyrene and TPA: terephthalaldehyde) COF film has a high photoresponsivity of 59.79 µA W-1 at 420 nm for photoelectrochemical (PEC) detection. When employed as an active material for optoelectronic synaptic devices for the first attempt, it shows excellent light-stimulated synaptic plasticity properties such as short-term plasticity (STP), long-term plasticity (LTP), and the conversion of STP to LTP, which can be used to simulate biological synaptic functions.

3.
J Am Chem Soc ; 145(49): 26900-26907, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38010167

RESUMO

The manipulation of topological architectures in two-dimensional (2D) covalent organic framework (COF) materials for different applications is promising but remains a great challenge. Here, we first report the topology-selective synthesis of two distinct varieties of 2DCOFs, imine-based HT-COFs and benzimidazole-fused BI-HT-COFs, by simply altering acid catalysts. To HT-COFs, a superlattice of 1D channel with a persistent triangular shape is formed via Schiff base reaction, while to BI-HT-COFs, a hexagonal lattice structure with a highly conjugated structure and imidazole linkages is constructed due to an imine-based cyclization reaction. The two COFs exhibited marked differences in their bandgap, chemical stability, molecular adsorption, and catalytic activity, which make them have different fields of application. This work not only diversifies the hexaaminotriphenylene-based 2DCOF topologies but also provides vivid examples of structure-property relationships, which would facilitate fundamental research and potential applications of 2DCOFs.

4.
ACS Appl Mater Interfaces ; 15(13): 16991-16998, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972375

RESUMO

Two-dimensional (2D) conjugated metal-organic framework (c-MOF) films bring a completely new opportunity in the fields of catalysis, energy, and sensors, but preparing large-area continuous 2D c-MOF films remains a tremendous challenge. Here, we report a universal recrystallization strategy to synthesize large-area continuous 2D c-MOF films, revealing that the recrystallization strategy can significantly improve the electrochemical sensor sensitivity. Applying the 2D Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) c-MOF film as the active layer, the electrochemical sensor for glucose detection shows a high sensitivity of 20600 µA mM-1 cm-2, which is the best compared with the active materials reported previously. Most importantly, the as-made Cu3(HHTP)2 c-MOF-based electrochemical sensor possesses excellent stability. Overall, this work brings a brand-new universal strategy to prepare large-area continuous 2D c-MOF films for electrochemical sensors.

6.
Nat Commun ; 13(1): 7599, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494377

RESUMO

Conductive metal-organic frameworks (MOFs) have performed well in the fields of energy and catalysis, among which two-dimensional (2D) and three-dimensional (3D) MOFs are well-known. Here, we have synthesized a one-dimensional (1D) conductive metal-organic framework (MOF) in which hexacoordinated 1,5-Diamino-4,8-dihydroxy-9,10-anthraceneedione (DDA) ligands are connected by double Cu ions, resulting in nanoribbon layers with 1D π-d conjugated nanoribbon plane and out-of-plane π-π stacking, which facilitates charge transport along two dimensions. The DDA-Cu as a highly conductive n-type MOF has high crystalline quality with a conductivity of ~ 9.4 S·m-1, which is at least two orders of magnitude higher than that of conventional 1D MOFs. Its electrical band gap (Eg) and exciton binding energy (Eb) are approximately 0.49 eV and 0.3 eV, respectively. When utilized as electrode material in a supercapacitor, the DDA-Cu exhibits good charge storage capacity and cycle stability. Meanwhile, as thse active semiconductor layer, it successfully simulates the artificial visual perception system with excellent bending resistance and air stability as a MOF-based flexible optoelectronic synaptic case. The controllable preparation of high-quality 1D DDA-Cu MOF may enable new architectural designs and various applications in the future.


Assuntos
Estruturas Metalorgânicas , Nanotubos de Carbono , Condutividade Elétrica , Catálise , Eletrodos
7.
Nat Commun ; 13(1): 1411, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301302

RESUMO

Covalent organic frameworks (COFs) can exhibit high specific surface area and catalytic activity, but traditional solution-based synthesis methods often lead to insoluble and infusible powders or fragile films on solution surface. Herein we report large-area -C=N- linked two-dimensional (2D) COF films with controllable thicknesses via vapor induced conversion in a chemical vapor deposition (CVD) system. The assembly process is achieved by reversible Schiff base polycondensation between PyTTA film and TPA vapor, which results in a uniform organic framework film directly on growth substrate, and is driven by π-π stacking interactions with the aid of water and acetic acid. Wafer-scale 2D COF films with different structures have been successfully synthesized by adjusting their building blocks, suggesting its generic applicability. The carrier mobility of PyTTA-TPA COF films can reach 1.89 × 10-3 cm2 V-1 s-1. When employed as catalysts in hydrogen evolution reaction (HER), they show high electrocatalytic activity compared with metal-free COFs or even some metallic catalysts. Our results represent a versatile route for the direct construction of large-area uniform 2D COF films on substrates towards multi-functional applications of 2D π-conjugated systems.

8.
Angew Chem Int Ed Engl ; 61(2): e202113067, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699115

RESUMO

Facile synthesis and post-processing of covalent organic frameworks (COFs) under mild synthetic conditions are highly sought after and important for widespread utilizations in catalysis and energy storage. Here we report the synthesis of the chemically stable aza-fused COFs BPT-COF and PT-COF by a liquid-phase method. The process involves the spontaneous polycondensation of vicinal diamines and vicinal diketones, and is driven by the near-equilibrium growth of COF domains at a very low monomer concentration. The method permits in situ assembly of COFs and COF-GO hybrid materials and leads to the formation of a uniform conducting film on arbitrary substrates on vacuum filtration. When used as electrocatalysts, the as-prepared membranes show a fast hydrogen evolution reaction (HER) with a low overpotential (45 mV at 10 mA cm-2 ) and a small Tafel slope (53 mV dec-1 ), which are the best among metal-free catalysts. Our results may open a new route towards the preparation of highly π-conjugated COFs for multifunctional applications.

9.
J Hazard Mater ; 421: 126796, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34388925

RESUMO

Covalent organic frameworks (COFs) with well-defined supramolecular structures and high surface-area-to-volume ratio have received extensive attention on their adsorption of contaminants from micro- to nano-size. Here, we studied the adsorption mechanisms of three typical nanoplastics (NP), including polyethylene (PE), nylon-6 (PA 6), and polyethylene terephthalate (PET) on chemically stable COFs (TpPa-X, X = H, CH3, OH, NO2 and F) by molecular dynamics simulations. Depending on molecular structure and surface composition, two distinct interactions-electrostatic interaction and van der Waals (vdW) interaction-are identified to be responsible for the adsorption of different NP pollutants on TpPa-X. The vdW interaction is dominant during the adsorption process, while polar groups in polymers and COFs can enhance the adsorption because of the electrostatic interaction. Compared with other functional COFs, we found that TpPa-OH shows the strongest adsorption with the NP pollutants employed in this study. This work reveals the COF-polymer adsorption behavior and properties at atomic scale, which is crucial to the development of promising COF materials to deal with NP pollution.

10.
Angew Chem Int Ed Engl ; 60(32): 17440-17445, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34081388

RESUMO

2D metal-organic framework (MOF) film as the active layer show promising application prospects in various fields including sensors, catalysis, and electronic devices. However, exploring the application of 2D MOF film in the field of artificial synapses has not been implemented yet. In this work, we fabricated a novel 2D MOF film (Cu-THPP, THPP=5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine), and further used it as an active layer to explore the application in the simulation of human brain synapses. It shows excellent light-stimulated synaptic plasticity properties, and exhibits the foundation function of synapses such as long-term plasticity (LTP), short-term plasticity (STP), and the conversion of STP to LTP. Most critically, the MOF based artificial synaptic device exhibits an excellent stability in atmosphere. This work opens the door for the application of 2D MOF film in the simulation of human brain synapses.


Assuntos
Materiais Biomiméticos/química , Membranas Artificiais , Estruturas Metalorgânicas/química , Materiais Biomiméticos/efeitos da radiação , Biomimética/métodos , Cobre/química , Cobre/efeitos da radiação , Luz , Estruturas Metalorgânicas/efeitos da radiação , Plasticidade Neuronal , Porfirinas/química , Porfirinas/efeitos da radiação , Sinapses/química
11.
Adv Mater ; 33(13): e2007741, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33599039

RESUMO

The preparation of large-area 2D conductive metal-organic framework (MOF) films remains highly desirable but challenging. Here, inspired by the capillary phenomenon, a face-to-face confinement growth method to grow conductive 2D Cu2 (TCPP) (TCPP = meso-tetra(4-carboxyphenyl)porphine) MOF films on dielectric substrates is developed. Trace amounts of solutions containing low-concentration Cu2+ and TCPP are pumped cyclically into a micropore interface to produce this growth. The crystal structures are confirmed with various characterization techniques, which include high-resolution atomic force microscopy and cryogenic transmission electron microscopy (Cryo-TEM). The Cu2 (TCPP) MOF film exhibit an electrical conductivity of ≈0.007 S cm-1 , which is approximately four orders of magnitude higher than other carboxylic-acid-based MOF materials (10-6 S cm-1 ). Other wafer-scale conductive MOF films such as M3 (HHTP)2 (M = Cu, Co, and Ni; HHTP = 2,3,6,7,10,11-triphenylenehexol) can be produced utilizing this strategy and suggests this method has widescale applicability potential.

12.
Angew Chem Int Ed Engl ; 60(6): 2887-2891, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33300656

RESUMO

Owing to their excellent physical and electrical properties, metal-organic framework (MOF) materials with well-defined supramolecular structures have received extensive research attention. However, the fabrication of large-area two-dimensional (2D) MOF films is still a significant challenge. Herein, we propose a novel electrochemical (EC) synthesis method for the preparation of large-area Cu3 (HHTP)2 MOF film on single-crystal Cu (100) anode. The surface reaction was achieved via charge-induced molecular assembly. The synthesized MOF film exhibited a high crystalline quality with an electrical conductivity of approximately 0.087 S cm-1 , which was around 1000 times larger than the previously reported values for the same material prepared by the interface method. In addition, Cu2 (MTCP), Cu3 (BTPA)2 , and Cu3 (TPTC)2 MOF films were synthesized on Cu foil with the same strategy, which confirmed the universality of the proposed method. This controllable EC method can be effectively applied to the industrial-scale production of 2D MOF films on Cu foil.

13.
Mater Sci Eng C Mater Biol Appl ; 105: 110017, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546382

RESUMO

Hydroxyapatite (HAp) is a highly promising material as a drug carrier. The solubility, osteoinductivity, antibacterial properties and drug loading efficiency of HAp can be further enhanced by Zn doping. In this study, we carried out first-principles and molecular dynamics (MD) simulations to investigate the influence of Zn doping on the crystal structure and adsorption capacity of macromolecular drugs on HAp. Our results showed that the binding energy of doxorubicin (DOX) on HAp is significantly increased in consequence of Zn-doping. Moreover, the interaction between surface Ca ions and carbonyl-O mostly contributed to the adsorption. The binding energy of tinidazole on HAp was much lower than that observed for DOX. The number of active "O" atoms in the drug and binding stability were positively correlated. These simulations provide important insight into the understanding of drug adsorption on HAp or ion-doped HAp.


Assuntos
Doxorrubicina/química , Durapatita/química , Simulação de Dinâmica Molecular , Tinidazol/química , Zinco/química , Adsorção , Doxorrubicina/farmacologia , Conformação Molecular , Eletricidade Estática , Termodinâmica , Tinidazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...