Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(2): e2305121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985176

RESUMO

Developing microscale sensors capable of force measurements down to the scale of piconewtons is of fundamental importance for a wide range of applications. To date, advanced instrumentations such as atomic force microscopes and other specifically developed micro/nano-electromechanical systems face challenges such as high cost, complex detection systems and poor electromagnetic compatibility. Here, it presents the unprecedented design and 3D printing of general fiber-integrated force sensors using spring-composed Fabry-Perot cavities. It calibrates these microscale devices employing varied-diameter µ $\umu$ m-scale silica particles as standard weights. The force sensitivity and resolution reach values of (0.436 ± 0.007) nmnN-1 and (40.0 ± 0.7) pN, respectively, which are the best resolutions among all fiber-based nanomechanical probes so far. It also measured the non-linear airflow force distributions produced from a nozzle with an orifice of 2 µ $\umu$ m, which matches well with the full-sized simulations. With further customization of their geometries and materials, it anticipates the easy-to-use force probe can well extend to many other applications such as air/fluidic turbulences sensing, micro-manipulations, and biological sensing.

2.
Nanomicro Lett ; 15(1): 180, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439950

RESUMO

Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices. Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures, additive manufacturing approaches such as direct ink writing offer convenient, on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales. However, the lack of a universal ink design strategy greatly limits the choices of printable oxides. Here, a universal, facile synthetic strategy is developed for direct ink writable polymer precursor inks based on metal-polymer coordination effect. Specifically, polyethyleneimine functionalized by ethylenediaminetetraacetic acid is employed as the polymer matrix for adsorbing targeted metal ions. Next, glucose is introduced as a crosslinker for endowing the polymer precursor inks with a thermosetting property required for 3D printing via the Maillard reaction. For demonstrations, binary (i.e., ZnO, CuO, In2O3, Ga2O3, TiO2, and Y2O3) and ternary metal oxides (i.e., BaTiO3 and SrTiO3) are printed into 3D architectures with sub-micrometer resolution by extruding the inks through ultrafine nozzles. Upon thermal crosslinking and pyrolysis, the 3D microarchitectures with woodpile geometries exhibit strong light-matter coupling in the mid-infrared region. The design strategy for printable inks opens a new pathway toward 3D-printed optoelectronic devices based on functional oxides.

3.
Opt Express ; 30(14): 25536-25543, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237081

RESUMO

Using the two-photon polymerization (TPP) lithography, here we propose and experimentally demonstrate a fiber-tipped Fabry-Perot interferometer (FPI) for liquid refractive index (RI) measurement. To fit the aqueous environment, the FPI is designed as an open-cell microstructure consisting of well-crafted surfaces together with supporting rods, where the major spectral interference occurs between the waveguide's facet and the printed surface. Subsequently, the sensing performances of the fiber FPI are comprehensively studied under various RI as well as temperature configurations. The RI sensitivity is obtained to be ∼1058 nm/RIU with a low detection limit of 4.5× 10-6 RIU, which is comparable to that of previous reported FPIs. And the temperature cross-sensitivity reaches a value of 8.2 × 10-5 RIU/°C, indicating the good reliability for RI monitoring. Compared to other fiber FPIs, our sensor exhibits substantial advantages such as ease of fabrication, highly smooth cavity surfaces, and sufficient mechanical strength, providing a practical and competitive solution for chemical and biological sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA