Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Targets ; 17(6): 707-20, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23510463

RESUMO

INTRODUCTION: Since erythropoietin (EPO) and EPO receptor (EPOR) are expressed in the central nervous system (CNS) beyond hematopoietic system, EPO illustrates a robust biological function in maintaining neuronal survival and regulating neurogenesis and may play a crucial role in neurodegenerative diseases. AREAS COVERED: EPO is capable of modulating multiple cellular signal transduction pathways to promote neuronal survival and enhance the proliferation and differentiation of neuronal progenitor cells. Initially, EPO binds to EPOR to activate the Janus-tyrosine kinase 2 (Jak2) protein followed by modulation of protein kinase B (Akt), mammalian target of rapamycin, signal transducer and activators of transcription 5, mitogen-activated protein kinases, protein tyrosine phosphatases, Wnt1 and nuclear factor κB. As a result, EPO may actively prevent the progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis and motor neuron diseases. EXPERT OPINION: Novel knowledge of the cell signaling pathways regulated by EPO in the CNS will allow us to establish the foundation for the development of therapeutic strategies against neurodegenerative diseases. Further investigation of the role of EPO in neurodegenerative diseases can not only formulate EPO as a therapeutic candidate, but also further identify novel therapeutic targets for these disorders.


Assuntos
Desenho de Fármacos , Eritropoetina/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Receptores da Eritropoetina/metabolismo , Animais , Doença Crônica , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/fisiopatologia , Neurogênese/fisiologia , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Trends Mol Med ; 19(1): 51-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23265840

RESUMO

The mammalian target of rapamycin (mTOR), the key component of the protein complexes mTORC1 and mTORC2, plays a critical role in cellular development, tissue regeneration, and repair. mTOR signaling can govern not only stem cell development and quiescence but also cell death during apoptosis or autophagy. Recent studies highlight the importance of both traditional and newly recognized interactors of mTOR, such as p70S6K, 4EBP1, GSK-3ß, REDD1/RTP801, TSC1/TSC2, growth factors, wingless, and forkhead transcription factors, that influence Alzheimer's disease, Parkinson's disease, Huntington's disease, tuberous sclerosis, and epilepsy. Targeting mTOR in the nervous system can offer exciting new avenues of drug discovery, but crucial to this premise is elucidating the complexity of mTOR signaling for robust and safe clinical outcomes.


Assuntos
Sistema Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Humanos , Sistema Nervoso/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/química
3.
Expert Opin Drug Discov ; 8(1): 35-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23092114

RESUMO

INTRODUCTION: Diabetes mellitus impacts almost 200 million individuals worldwide and leads to debilitating complications. New avenues of drug discovery must target the underlying cellular processes of oxidative stress, apoptosis, autophagy, and inflammation that can mediate multi-system pathology during diabetes mellitus. AREAS COVERED: The authors examine the novel directions for drug discovery that involve: the ß-nicotinamide adenine dinucleotide (NAD(+)) precursor nicotinamide, the cytokine erythropoietin, the NAD(+)-dependent protein histone deacetylase SIRT1, the serine/threonine-protein kinase mammalian target of rapamycin (mTOR), and the wingless pathway. Furthermore, the authors present the implications for the targeting of these pathways that oversee gluconeogenic genes, insulin signaling and resistance, fatty acid beta-oxidation, inflammation, and cellular survival. EXPERT OPINION: Nicotinamide, erythropoietin, and the downstream pathways of SIRT1, mTOR, forkhead transcription factors, and wingless signaling offer exciting prospects for novel directions of drug discovery for the treatment of metabolic disorders. Future investigations must dissect the complex relationship and fine modulation of these pathways for the successful translation of robust reparative and regenerative strategies against diabetes mellitus and the complications of this disorder.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Animais , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Eritropoetina/administração & dosagem , Eritropoetina/metabolismo , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/metabolismo , Niacinamida/administração & dosagem , Niacinamida/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
4.
Curr Neurovasc Res ; 10(1): 54-69, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23151077

RESUMO

As a member of the secreted extracellular matrix associated proteins of the CCN family, Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4) is garnering increased attention not only as a potent proliferative entity, but also as a robust cytoprotective agent during toxic insults. Here we demonstrate that WISP1 prevents forkhead transcription factor FoxO3a mediated caspase 1 and caspase 3 apoptotic cell death in primary neurons during oxidant stress. Phosphoinositide 3-kinase (PI 3-K) and protein kinase B (Akt1) are necessary for WISP1 to foster posttranslational phosphorylation of FoxO3a and sequester FoxO3a in the cytoplasm of neurons with protein 14-3-3. Through an autoregulatory loop, WISP1 also minimizes deacytelation of FoxO3a, prevents caspase 1 and 3 activation, and promotes an effective neuroprotective level of SIRT1 activity through SIRT1 nuclear trafficking and prevention of SIRT1 caspase degradation. Elucidation of the critical pathways of WISP1 that determine neuronal cell survival during oxidative stress may offer novel therapeutic avenues for neurodegenerative disorders.


Assuntos
Proteínas de Sinalização Intercelular CCN/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Hipocampo/metabolismo , Homeostase/fisiologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/farmacologia , Transdução de Sinais/fisiologia , Sirtuína 1/metabolismo , Androstadienos/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína Forkhead Box O3 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Hipocampo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosforilação/efeitos dos fármacos , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Wortmanina
5.
Curr Neurovasc Res ; 10(1): 29-38, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23244622

RESUMO

More than 110 million individuals will suffer from cognitive loss worldwide by the year 2050 with a majority of individuals presenting with Alzheimer's disease (AD). Yet, successful treatments for etiologies that involve ß.-amyloid (Aß.) toxicity in AD remain elusive and await novel avenues for drug development. Here we show that Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4) controls the post-translational phosphorylation of Akt1, p70S6K, and AMP activated protein kinase (AMPK) to the extent that tuberous sclerosis complex 2 (TSC2) (Ser1387) phosphorylation, a target of AMPK, is decreased and TSC2 (Thr1462) phosphorylation, a target of Akt1, is increased. The ability of WISP1 to limit TSC2 activity allows WISP1 to increase the activity of p70S6K, since gene silencing of TSC2 further enhances WISP1 phosphorylation of p70S6K. However, a minimal level of TSC2 activity is necessary to modulate WISP1 cytoprotection that may require modulation of mTOR activity, since gene knockdown of TSC2 impairs the ability of WISP1 to protect microglia against apoptotic membrane phosphatidylserine (PS) exposure, nuclear DNA degradation, mitochondrial membrane depolarization, and cytochrome c release during Aß. exposure.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Apoptose/fisiologia , Proteínas de Sinalização Intercelular CCN/metabolismo , Citoproteção/fisiologia , Microglia/metabolismo , Fragmentos de Peptídeos/toxicidade , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Citocromos c/metabolismo , Citoproteção/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Microglia/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína 2 do Complexo Esclerose Tuberosa
6.
Int J Mol Sci ; 13(11): 13830-66, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23203037

RESUMO

Oxidative stress impacts multiple systems of the body and can lead to some of the most devastating consequences in the nervous system especially during aging. Both acute and chronic neurodegenerative disorders such as diabetes mellitus, cerebral ischemia, trauma, Alzheimer's disease, Parkinson's disease, Huntington's disease, and tuberous sclerosis through programmed cell death pathways of apoptosis and autophagy can be the result of oxidant stress. Novel therapeutic avenues that focus upon the phosphoinositide 3-kinase (PI 3-K), Akt (protein kinase B), and the mammalian target of rapamycin (mTOR) cascade and related pathways offer exciting prospects to address the onset and potential reversal of neurodegenerative disorders. Effective clinical translation of these pathways into robust therapeutic strategies requires intimate knowledge of the complexity of these pathways and the ability of this cascade to influence biological outcome that can vary among disorders of the nervous system.


Assuntos
Sistema Nervoso/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Morte Celular , Sobrevivência Celular , Complicações do Diabetes , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo
7.
Future Neurol ; 7(6): 733-748, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23144589

RESUMO

Neurodegenerative disorders lead to disability and death in a significant proportion of the world's population. However, many disorders of the nervous system remain with limited effective treatments. Kinase pathways in the nervous system that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and the mammalian target of rapamycin (mTOR) offer exciting prospects for the understanding of neurodegenerative pathways and the development of new avenues of treatment. PI 3-K, Akt, and mTOR pathways are vital cellular components that determine cell fate during acute and chronic disorders, such as Huntington's disease, Alzheimer's disease, Parkinson's disease, epilepsy, stroke, and trauma. Yet, the elaborate relationship among these kinases and the variable control of apoptosis and autophagy can lead to unanticipated biological and clinical outcomes. Crucial for the successful translation of PI 3-K, Akt, and mTOR into robust and safe clinical strategies will be the further elucidation of the complex roles that these kinase pathways hold in the nervous system.

8.
Int J Mol Sci ; 13(9): 11102-11129, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109841

RESUMO

New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer's disease, Parkinson's disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control ß-catenin, glycogen synthase kinase-3ß, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders.


Assuntos
Eritropoetina/metabolismo , Sistema Nervoso/patologia , Doenças Neurodegenerativas/patologia , Apoptose/fisiologia , Progressão da Doença , Humanos , Sistema Nervoso/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Doenças Neurodegenerativas/terapia , Estresse Oxidativo/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Eritropoetina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Wnt1/metabolismo
9.
PLoS One ; 7(9): e45456, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029019

RESUMO

Emerging strategies that center upon the mammalian target of rapamycin (mTOR) signaling for neurodegenerative disorders may bring effective treatment for a number of difficult disease entities. Here we show that erythropoietin (EPO), a novel agent for nervous system disorders, prevents apoptotic SH-SY5Y cell injury in an oxidative stress model of oxygen-glucose deprivation through phosphatidylinositol-3-kinase (PI 3-K)/protein kinase B (Akt) dependent activation of mTOR signaling and phosphorylation of the downstream pathways of p70 ribosomal S6 kinase (p70S6K), eukaryotic initiation factor 4E-binding protein 1 (4EBP1), and proline rich Akt substrate 40 kDa (PRAS40). PRAS40 is an important regulatory component either alone or in conjunction with EPO signal transduction that can determine cell survival through apoptotic caspase 3 activation. EPO and the PI 3-K/Akt pathways control cell survival and mTOR activity through the inhibitory post-translational phosphorylation of PRAS40 that leads to subcellular binding of PRAS40 to the cytoplasmic docking protein 14-3-3. However, modulation and phosphorylation of PRAS40 is independent of other protective pathways of EPO that involve extracellular signal related kinase (ERK 1/2) and signal transducer and activator of transcription (STAT5). Our studies highlight EPO and PRAS40 signaling in the mTOR pathway as potential therapeutic strategies for development against degenerative disorders that lead to cell demise.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoproteção/efeitos dos fármacos , Eritropoetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Transcrição STAT5/metabolismo
10.
Prog Neurobiol ; 99(2): 128-48, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22980037

RESUMO

Neurodegenerative disorders affect a significant portion of the world's population leading to either disability or death for almost 30 million individuals worldwide. One novel therapeutic target that may offer promise for multiple disease entities that involve Alzheimer's disease, Parkinson's disease, epilepsy, trauma, stroke, and tumors of the nervous system is the mammalian target of rapamycin (mTOR). mTOR signaling is dependent upon the mTORC1 and mTORC2 complexes that are composed of mTOR and several regulatory proteins including the tuberous sclerosis complex (TSC1, hamartin/TSC2, tuberin). Through a number of integrated cell signaling pathways that involve those of mTORC1 and mTORC2 as well as more novel signaling tied to cytokines, Wnt, and forkhead, mTOR can foster stem cellular proliferation, tissue repair and longevity, and synaptic growth by modulating mechanisms that foster both apoptosis and autophagy. Yet, mTOR through its proliferative capacity may sometimes be detrimental to central nervous system recovery and even promote tumorigenesis. Further knowledge of mTOR and the critical pathways governed by this serine/threonine protein kinase can bring new light for neurodegeneration and other related diseases that currently require new and robust treatments.


Assuntos
Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/fisiopatologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Humanos
11.
Curr Neurovasc Res ; 9(4): 239-49, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22873724

RESUMO

Given the present challenges to attain effective treatment for ß-amyloid (Aß) toxicity in neurodegenerative disorders such as Alzheimer's disease, development of novel cytoprotective pathways that can assist immune mediated therapies through the preservation of central nervous system microglia could offer significant promise. We show that the CCN4 protein, Wnt1 inducible signaling pathway protein 1 (WISP1), is initially up-regulated by Aß and can modulate its endogenous expression for the protection of microglia during Aß mediated apoptosis. WISP1 activates mTOR and phosphorylates p70S6K and 4EBP1 through the control of the regulatory mTOR component PRAS40. Loss of PRAS40 through gene reduction or inhibition by WISP1 is cytoprotective. WISP1 ultimately governs PRAS40 by sequestering PRAS40 intracellularly through post-translational phosphorylation and binding to protein 14-3-3. Our work identifies WISP1, mTOR signaling, and PRAS40 as targets for new strategies directed against Alzheimer's disease and related disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos beta-Amiloides/toxicidade , Apoptose/fisiologia , Proteínas de Sinalização Intercelular CCN/fisiologia , Microglia/patologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Peptídeos beta-Amiloides/metabolismo , Proteínas de Sinalização Intercelular CCN/biossíntese , Linhagem Celular , Humanos , Líquido Intracelular/metabolismo , Microglia/metabolismo , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas/biossíntese , Distribuição Aleatória , Regulação para Cima/fisiologia
12.
Expert Opin Ther Targets ; 16(12): 1203-14, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22924465

RESUMO

INTRODUCTION: Apoptosis and autophagy impact cell death in multiple systems of the body. Development of new therapeutic strategies that target these processes must address their complex role during developmental cell growth as well as during the modulation of toxic cellular environments. AREAS COVERED: Novel signaling pathways involving Wnt1-inducible signaling pathway protein 1 (WISP1), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), ß-catenin and mammalian target of rapamycin (mTOR) govern apoptotic and autophagic pathways during oxidant stress that affect the course of a broad spectrum of disease entities including Alzheimer's disease, Parkinson's disease, myocardial injury, skeletal system trauma, immune system dysfunction and cancer progression. Implications of potential biological and clinical outcome for these signaling pathways are presented. EXPERT OPINION: The CCN family member WISP1 and its intimate relationship with canonical and non-canonical wingless signaling pathways of PI3K, Akt1, ß-catenin and mTOR offer an exciting approach for governing the pathways of apoptosis and autophagy especially in clinical disorders that are currently without effective treatments. Future studies that can elucidate the intricate role of these cytoprotective pathways during apoptosis and autophagy can further the successful translation and development of these cellular targets into robust and safe clinical therapeutic strategies.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Proteínas de Sinalização Intercelular CCN/metabolismo , Doença , Humanos , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , beta Catenina/metabolismo
13.
Curr Neurovasc Res ; 9(2): 91-101, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22475393

RESUMO

Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4) is a CCN family member more broadly identified with development and tumorigenesis. However, recent studies have shed new light and enthusiasm on WISP1 as a novel target directed against toxic cell degeneration. Here we show WISP1 prevents apoptotic degeneration in primary neurons during oxidant stress through the activation of protein kinase B (Akt1), the post-translational maintenance of ß-catenin integrity that is consistent with inhibition of glycogen synthase kinase-3ß (GSK-3ß), and the subcellular trafficking of ß- catenin to foster its translocation to the nucleus. Interestingly, WISP1 autoregulates its expression through the promotion of ß-catenin activity and may employ ß-catenin to have a limited control over autophagy, but neuronal injury during oxidant stress as a result of autophagy appears portioned to a small population of neurons without significant impact upon overall cell survival. New strategies that target WISP1, its autoregulation, and the pathways responsible for neuronal cell injury may bring forth new insight for the treatment of neurodegenerative disorders.


Assuntos
Autofagia/fisiologia , Proteínas de Sinalização Intercelular CCN/metabolismo , Núcleo Celular/metabolismo , Neurônios/metabolismo , Oxidantes/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Proteínas de Sinalização Intercelular CCN/biossíntese , Proteínas de Sinalização Intercelular CCN/genética , Núcleo Celular/genética , Células Cultivadas , Homeostase/fisiologia , Neurônios/patologia , Transporte Proteico/imunologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Ratos , Ratos Sprague-Dawley , Frações Subcelulares , beta Catenina/genética
14.
Aging (Albany NY) ; 4(3): 187-201, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22388478

RESUMO

Central nervous system microglia promote neuronal regeneration and sequester toxic ß-amyloid (Aß) deposition during Alzheimer's disease. We show that the cytokine erythropoietin (EPO) decreases the toxic effect of Aß on microgliain vitro. EPO up-regulates the cysteine-rich glycosylated wingless protein Wnt1 and activates the PI 3-K/Akt1/mTOR/ p70S6K pathway. This in turn increases phosphorylation and cytosol trafficking of Bad, reduces the Bad/Bcl-xL complex and increases the Bcl-xL/Bax complex, thus preventing caspase 1 and caspase 3 activation and apoptosis. Our data may foster development of novel strategies to use cytoprotectants such as EPO for Alzheimer's disease and other degenerative disorders.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Eritropoetina/farmacologia , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Fosfatidilinositol 3-Quinase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Wnt1/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Proteína bcl-X/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular , Citoproteção , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microglia/enzimologia , Microglia/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Proteínas Recombinantes/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Tempo , Transfecção , Proteína Wnt1/genética , Proteína bcl-X/genética
15.
Expert Opin Ther Targets ; 16(2): 167-78, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22233091

RESUMO

INTRODUCTION: The sirtuin SIRT1 is expressed throughout the body, has broad biological effects and can significantly affect both cellular survival and longevity during acute and long-term injuries, which involve both oxidative stress and cell metabolism. AREAS COVERED: SIRT1 has an intricate role in the pathology, progression, and treatment of several disease entities, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, tumorigenesis, cardiovascular disease with myocardial injury and atherosclerosis, metabolic disease, and aging-related disease. New areas of study in these disciplines, with discussion of the cellular biology, are highlighted. EXPERT OPINION: Novel signaling pathways for SIRT1, which can be targeted to enhance cellular protection and potentially extend lifespan, continue to emerge. Investigations that can further determine the intracellular signaling, trafficking and post-translational modifications that occur with SIRT1 in a variety of cell systems and environments will allow us to further translate this knowledge into effective therapeutic strategies that will be applicable to multiple systems of the body.


Assuntos
Estresse Oxidativo/fisiologia , Sirtuína 1/metabolismo , Envelhecimento/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Humanos , Doenças Metabólicas/metabolismo , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais
16.
Curr Neurovasc Res ; 9(1): 20-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22272766

RESUMO

Wnt1 inducible signaling pathway protein 1 (WISP1) is a member of the CCN family of proteins that determine cell growth, cell differentiation, immune system activation, and cell survival in tissues ranging from the cardiovascular-pulmonary system to the reproductive system. Yet, little is known of the role of WISP1 as a neuroprotective entity in the nervous system. Here we demonstrate that WISP1 is present in primary hippocampal neurons during oxidant stress with oxygen-glucose deprivation (OGD). WISP1 expression is significantly enhanced during OGD exposure by the cysteine-rich glycosylated protein Wnt1. Similar to the neuroprotective capabilities known for Wnt1 and its signaling pathways, WISP1 averts neuronal cell injury and apoptotic degeneration during oxidative stress exposure. WISP1 requires activation of phosphoinositide 3-kinase (PI 3-K) and Akt1 pathways to promote neuronal cell survival, since blockade of these pathways abrogates cellular protection. Furthermore, WISP1 through PI 3-K and Akt1 phosphorylates Bad and GSK-3ß, minimizes expression of the Bim/Bax complex while increasing the expression of Bclx(L)/Bax complex, and prevents mitochondrial membrane permeability, cytochrome c release, and caspase 3 activation in the presence of oxidant stress. These studies provide novel considerations for the development of WISP1 as an effective and robust therapeutic target not only for neurodegenerative disorders, but also for disease entities throughout the body.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Degeneração Neural/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Sobrevivência Celular/fisiologia , Fragmentação do DNA , Hipocampo/metabolismo , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Proteína bcl-X/metabolismo
17.
Future Cardiol ; 8(1): 89-100, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22185448

RESUMO

Sirtuin (the mammalian homolog of silent information regulation 2 of yeast Saccharomyces cerevisiae) 1 (SIRT1), a NAD-dependent histone deacetylase, has emerged as a critical regulator in response to oxidative stress. Through antagonism of oxidative stress-induced cell injury and through the maintenance of metabolic homeostasis in the body, SIRT1 can block vascular system injury. SIRT1 targets multiple cellular proteins, such as peroxisome proliferator-activated receptor-γ and its coactivator-1α, forkhead transcriptional factors, AMP-activated protein kinase, NF-κB and protein tyrosine phosphatase to modulate intricate cellular pathways of multiple diseases. In the cardiovascular system, activation of SIRT1 can not only protect against oxidative stress at the cellular level, but can also offer increased survival at the systemic level to limit coronary heart disease and cerebrovascular disease. Future knowledge regarding SIRT1 and its novel pathways will open new directions for the treatment of cardiovascular disease as well as offer the potential to limit disability from several related disorders.


Assuntos
Doença da Artéria Coronariana/patologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/genética , Proteínas Quinases Ativadas por AMP , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Doença da Artéria Coronariana/genética , Citoproteção , Proteínas de Choque Térmico/análise , Proteínas de Choque Térmico/genética , Humanos , NF-kappa B , PPAR gama/análise , PPAR gama/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Sirtuína 1/efeitos dos fármacos , Fatores de Transcrição/análise , Fatores de Transcrição/genética
18.
Rom J Morphol Embryol ; 52(4): 1173-85, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22203920

RESUMO

The sirtuin SIRT1, a class III NAD(+)-dependent protein histone deacetylase, is present throughout the body that involves cells of the central nervous system, immune system, cardiovascular system, and the musculoskeletal system. SIRT1 has broad biological effects that affect cellular metabolism as well as cellular survival and longevity that can impact both acute and chronic disease processes that involve neurodegenerative disease, diabetes mellitus, cardiovascular disease, and cancer. Given the intricate relationship SIRT1 holds with a host of signal transduction pathways ranging from transcription factors, such as forkhead, to cytokines and growth factors, such as erythropoietin, it becomes critical to elucidate the cellular pathways of SIRT1 to safely and effectively develop and translate novel avenues of treatment for multiple disease entities.


Assuntos
Senescência Celular , Sirtuína 1/metabolismo , Pesquisa Translacional Biomédica , Animais , Sobrevivência Celular , Citoproteção , Humanos , Estresse Oxidativo
19.
Curr Neurovasc Res ; 8(4): 270-85, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22023617

RESUMO

Inflammatory microglia modulate a host of cellular processes in the central nervous system that include neuronal survival, metabolic fluxes, foreign body exclusion, and cellular regeneration. Elucidation of the pathways that oversee microglial survival and integrity may offer new avenues for the treatment of neurodegenerative disorders. Here we demonstrate that erythropoietin (EPO), an emerging strategy for immune system modulation, prevents microglial early and late apoptotic injury during oxidant stress through Wnt1, a cysteine-rich glycosylated protein that modulates cellular development and survival. Loss of Wnt1 through blockade of Wnt1 signaling or through the gene silencing of Wnt1 eliminates the protective capacity of EPO. Furthermore, endogenous Wnt1 in microglia is vital to preserve microglial survival since loss of Wnt1 alone increases microglial injury during oxidative stress. Cellular protection by EPO and Wnt1 intersects at the level of protein kinase B (Akt1), the mammalian target of rapamycin (mTOR), and p70S6K, which are necessary to foster cytoprotection for microglia. Downstream from these pathways, EPO and Wnt1 control "anti-apoptotic" pathways of microglia through the modulation of mitochondrial membrane permeability, the release of cytochrome c, and the expression of apoptotic protease activating factor-1 (Apaf-1) and X-linked inhibitor of apoptosis protein (XIAP). These studies offer new insights for the development of innovative therapeutic strategies for neurodegenerative disorders that focus upon inflammatory microglia and novel signal transduction pathways.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/metabolismo , Eritropoetina/farmacologia , Neuroglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteína Wnt1/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Análise de Variância , Animais , Anticorpos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Transformada , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritropoetina/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/deficiência , Humanos , Hipóxia , Marcação In Situ das Extremidades Cortadas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Fosfatidilserinas/metabolismo , Fatores de Tempo , Proteína Wnt1/imunologia
20.
Curr Neurovasc Res ; 8(3): 220-35, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21722091

RESUMO

Given the cytoprotective ability of erythropoietin (EPO) in cerebral microvascular endothelial cells (ECs) and the invaluable role of ECs in the central nervous system, it is imperative to elucidate the cellular pathways for EPO to protect ECs against brain injury. Here we illustrate that EPO relies upon the modulation of SIRT1 (silent mating type information regulator 2 homolog 1) in cerebral microvascular ECs to foster cytoprotection during oxygen-glucose deprivation (OGD). SIRT1 activation which results in the inhibition of apoptotic early membrane phosphatidylserine (PS) externalization and subsequent DNA degradation during OGD becomes a necessary component for EPO protection in ECs, since inhibition of SIRT1 activity or diminishing its expression by gene silencing abrogates cell survival supported by EPO during OGD. Furthermore, EPO promotes the subcellular trafficking of SIRT1 to the nucleus which is necessary for EPO to foster vascular protection. EPO through SIRT1 averts apoptosis through activation of protein kinase B (Akt1) and the phosphorylation and cytoplasmic retention of the forkhead transcription factor FoxO3a. SIRT1 through EPO activation also utilizes mitochondrial pathways to prevent mitochondrial depolarization, cytochrome c release, and Bad, caspase 1, and caspase 3 activation. Our work identifies novel pathways for EPO in the vascular system that can govern the activity of SIRT1 to prevent apoptotic injury through Akt1, FoxO3a phosphorylation and trafficking, mitochondrial membrane permeability, Bad activation, and caspase 1 and 3 activities in ECs during oxidant stress.


Assuntos
Células Endoteliais/metabolismo , Eritropoetina/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Sirtuína 1/metabolismo , Animais , Apoptose/fisiologia , Western Blotting , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Marcação In Situ das Extremidades Cortadas , Potencial da Membrana Mitocondrial/fisiologia , Transporte Proteico/fisiologia , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...