Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-929468

RESUMO

@#In this paper, the uncertainties of correction factors of fluconazole impurities determined by HPLC standard curve method were evaluated, and the main common factors affecting the accuracy of standard curve method were found, so as to improve the accuracy of the method.In this study, the corresponding fitting lines of fluconazole and its impurities A, B, C, D, F and I were established respectively, and the ratio of the slope of fitting lines of each impurity and its corresponding principal component was calculated as the correction factor of the impurity.Then on the basis of GUM method, the uncertainty of each impurity correction factor determined by standard curve method was evaluated according to the established uncertainty evaluation scheme of correction factor determination process.The correction factor and uncertainty of fluconazole impurities A, B, C, D, F and I were 1.068 ± 0.046, 0.102 ± 0.005, 0.0582 ± 0.0031, 1.382 ± 0.121, 0.802 ± 0.067 and 1.383 ± 0.119, respectively, and the coverage factor k was 2.Finally, the contribution rate of each uncertainty component was calculated.In the relative combined standard uncertainties urel(f) of fluconazole impurities A, B, C, D, F and I correction factors, the sum of contribution rate of slope uncertainty urel(K) of the linear equation of principal component and its impurity is more than 85%; in the slope uncertainties urel(K) of linear equation, the contribution rates of uncertainties of solution concentration in 8 of 12 data groups are more than 80%, and the contribution rates of uncertainties introduced by reference substance content in solution concentration are about 80%.It can be seen that the preparation of linear solution concentration is the most influential factor in the determination of impurity correction factor by standard curve method, followed by the linear fitting process.In the preparation process of linear solution concentration, the purity of reference substance is the most influential factor, followed by weighing and pipetting times.The conclusion can help the experimenters to better formulate experimental plans and ensure the accuracy of the results when doing similar work.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-873580

RESUMO

@#To improve the standard of quality control of tazobactam and its preparations in China, national reference standard of tazobactam impurity A was developed. After tazobactam impurity A was synthesized, its structure was validated by infrared (IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR), and its content uniformity and short-term stability were measured and investigated. Then, water content and residue on ignition of impurity A were determined, and its purity was determined using high performance liquid chromatography (HPLC) with 10 mmol/L ammonium acetate solution-acetonitrile (98∶2) as the mobile phase. Mass balance method was used to determine the content of the first batch of tazobactam impurity A national standard substance. Meanwhile, nuclear magnetic quantitative method was used to calculate the content, which was mutually verified with the mass balance method. The developed reference material of tazobactam impurity A is consistent with the maximum degradation impurity in tazobactam system applicability solution and the reference material of tazobactam related substance A contained in USP41. Within the 95% confidence range, the ratio of inter- and intra-bottle variance of impurity A after separation was 0.61 (< F0.05(11,12)), proving that the uniformity was satisfying. The contents of organic impurity, water content and inorganic impurity in impurity A were 0.90%, 1.24% and 0.25%, respectively. The content of impurity A was determined to be 97.6% by mass balance method, which was basically consistent with the result of nuclear magnetic quantitative method (97.1%). Under the condition of 25 °C, the area normalized purity of impurity A was 99.1% at 0, 3, 5 and 10 days, proving that the sample was stable at room temperature for 10 days. Finally the first batch of national standard substance of tazobactam impurity A was established successfully.

3.
Pharmazie ; 67(10): 827-33, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23136715

RESUMO

HPLC has become the most important analytical technique for impurity profiling in order to assure the quality of pharmaceutical products. Although HPLC is considered as a well-established technology, it requires CRS (chemical reference substances) of impurities for qualification and quantification of impurity peaks. Many impurity CRS have been widely used for the impurity profile control, which causes a high cost of production in practice. In this study, we developed a new method for impurity profiling control, so called digitized impurity database analysis, which does not directly use impurity CRS. Using a quinolone antibiotic, gatifloxacin as an example, we first analyzed its impurities by DAD (diode array detector) to compile a digitized impurity database and then used the database to analyze the impurities in the samples of domestic gatifloxacin bulk materials and injections in China. We identified the impurities in the chromatogram by combining two-dimensional chromatographic spectral correlation analyses of ultraviolet spectra data and relative retention times. The content of the impurities was determined using relative response factors of impurity to gatifloxacin as normalization factors. The digital impurity database analysis technology we developed is a "green", economic and convenient method that may eliminate the use of impurity CRS in the impurity profile control.


Assuntos
Antibacterianos/análise , Fluoroquinolonas/análise , Algoritmos , China , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Contaminação de Medicamentos , Gatifloxacina , Indicadores e Reagentes , Injeções , Soluções Farmacêuticas/análise
4.
Acta Pharmaceutica Sinica ; (12): 1660-6, 2012.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-433029

RESUMO

The quality of some earlier developed antibiotics is usually ensured by the combination of HPLC purity and microbiological potency measurement in the pharmacopoeias of various countries because the relationship between their purity and potency is not clearly quantified. Due to potency is assessed using certain units of measurement, it can not be directly traced to the international system of units (SI unit). This has become a hotspot in the study of the quantitative relationship between purity and potency of antibiotics. It would be quite an achievement to simultaneously determine both purity and potency using HPLC methods during quality control. This study evaluated a multicomponent antibiotic product, gentamycin, as a test sample. First, pure samples of the C components of gentamycin: C1a, C2, C2a and C1 were prepared, separately. Second, quantitative relationship (theoretical potency) between the purity and potency of each C component of gentamycin were determined using 1H NMR, HPLC-ELSD and microbiological assay method. One milligram of gentamycin C1a, C2, C2a and C1 was equal to 1 286.98, 1 095.74, 1 079.52 and 739.61 gentamycin units, respectively. Finally, a method for the determination of gentamycin potency was established based on the proportion and content of C components of gentamycin. The unification of purity and potency for gentamycin was achieved using only HPLC-ELSD. It is also demonstrated that C components of gentamycin and micronomicin produce the same responses under ELSD, which means that it is not necessary to prepare separate reference standards for each C component of gentamycin and that quantitative testing can be performed accurately using only one micronomicin reference standard. This study simplified the previous method for the determination of the content of C components of gentamycin using HPLC-ELSD. The developed method is suitable for regular use as a part of quality control and can simplify the rigmarole quality control procedures provided in current pharmacopeias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA