Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431587

RESUMO

So far, poly(L-lactic acid), PLLA nanosheets proved to be promising for wound healing. Such biodegradable materials are easy to prepare, bio-friendly, cost-effective, simple to apply and were shown to protect burn wounds and facilitate their healing. At the same time, certain metal ions are known to be essential for wound healing, which is why this study was motivated by the idea of incorporating PLLA nanosheets with Zn2+ ion containing nanoparticles. Upon being applied on wound, such polymer nanosheets should release Zn2+ ions, which is expected to improve wound healing. The work thus focused on preparing PLLA nanosheets embedded with several kinds of Zn-containing nanoparticles, their characterization and ion-release behavior. ZnCl2 and ZnO nanoparticles were chosen because of their different solubility in water, with the intention to see the dynamics of their Zn2+ ion release in liquid medium with pH around 7.4. Interestingly, the prepared PLLA nanosheets demonstrated quit similar ion release rates, reaching the maximum concentration after about 10 h. This finding implies that such polymer materials can be promising as they are expected to release ions within several hours after their application on skin.

2.
ACS Appl Mater Interfaces ; 12(1): 1775-1788, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31794663

RESUMO

Predominantly, the removal of dissolved contaminates via the Fe electrocoagulation (EC) process depends on the electrocoagulants stability, specific area, porosity, dissolution rate, and phase transformation kinetics. The present investigation elucidates the role of applied currents and electrolyte counteranions on the crystalline phase and surface topography of electrocoagulants generated from Fe EC. Moreover, the dissolved contaminant micropollutant removal efficiency was also evaluated by electrochemically produced coagulants. This study confirms that mixed-phase iron (oxyhydr) oxide nanostructures were consistently produced from Fe EC with predominant formation of the goethite phase. The applied current controls the morphology of the coagulants, with flake-like morphology observed with currents at and below 100 mA and spherical morphology observed with currents above 100 mA. The counteranions in the electrolyte also impacted the morphology with spherical, nanosheet, and nanorod morphologies produced by Cl- or SO42-, CO32-, and HCO3- counteranions, respectively. BET analysis revealed the formation of electrocoagulants with micro-, meso-, and macropores. Surface area was markedly reduced from 142.85 to 41.96 m2 g-1 by incident coagulation resulting from increased anodic dissolution. Applicability of the electrocoagulant was examined by different micropollutants (acetaminophen (AC), antipyrine (AT), and atenolol (AT)). Results suggest that >90% and >80% TOC reduction were achieved with Na2CO3 and NaHCO3 as electrolyte media. The lower TOC reduction was rationalized by the identified intermediate products, and possible micropollutant degradation pathways were proposed based on LC-MS/MS analysis.

3.
Int J Mol Sci ; 20(17)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450647

RESUMO

Various recent experimental observations indicate that growing cells on engineered materials can alter their physiology, function, and fate. This finding suggests that better molecular-level understanding of the interactions between cells and materials may guide the design and construction of sophisticated artificial substrates, potentially enabling control of cells for use in various biomedical applications. In this review, we introduce recent research results that shed light on molecular events and mechanisms involved in the interactions between cells and materials. We discuss the development of materials with distinct physical, chemical, and biological features, cellular sensing of the engineered materials, transfer of the sensing information to the cell nucleus, subsequent changes in physical and chemical states of genomic DNA, and finally the resulting cellular behavior changes. Ongoing efforts to advance materials engineering and the cell-material interface will eventually expand the cell-based applications in therapies and tissue regenerations.


Assuntos
Materiais Biocompatíveis , Sobrevivência Celular , Engenharia Tecidual , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Fenômenos Biofísicos , Técnicas de Cultura de Células , Sobrevivência Celular/genética , Fenômenos Químicos , Expressão Gênica , Humanos , Mecanotransdução Celular , Engenharia Tecidual/métodos , Alicerces Teciduais/química
4.
Adv Mater ; 31(34): e1803432, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30773698

RESUMO

Surface-enhanced Raman spectroscopy is a powerful and sensitive analytical tool that has found application in chemical and biomolecule analysis and environmental monitoring. Since its discovery in the early 1970s, a variety of materials ranging from noble metals to nanostructured materials have been employed as surface enhanced Raman scattering (SERS) substrates. In recent years, 2D inorganic materials have found wide use in the development of SERS-based chemical sensors owing to their unique thickness dependent physico-chemical properties with enhanced chemical-based charge-transfer processes. Here, recent advances in the application of various 2D inorganic nanomaterials, including graphene, boron nitride, semiconducting metal oxides, and transition metal chalcogenides, in chemical detection via SERS are presented. The background of the SERS concept, including its basic theory and sensing mechanism, along with the salient features of different nanomaterials used as substrates in SERS, extending from monometallic nanoparticles to nanometal oxides, is comprehensively discussed. The importance of 2D inorganic nanomaterials in SERS enhancement, along with their application toward chemical detection, is explained in detail with suitable examples and illustrations. In conclusion, some guidelines are presented for the development of this promising field in the future.

5.
ACS Appl Mater Interfaces ; 9(43): 38135-38145, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990752

RESUMO

Ethanol serves as a biomarker as well as a chemical reagent for several applications and has been predominantly used as an alternative fuel (E10 and E85). Development of sensors for the detection and monitoring of ethanol vapor at lower operating temperatures has gathered momentum in the recent past. In this work, we reported the synthesis of self-assembled ZnO nanowires using electrospun technique without using any external surfactants or capping agents and their room temperature ethanol sensing properties. An inherent template namely monomer of the polymer poly(vinyl alcohol) (PVA) with two different molecular weights (14 000 and 140 000 g mol-1) was used along with the precursor zinc acetate dihydrate. The ZnO-PVA nanofibers have been tranformed to ZnO nanospheres and nanowires after calcination. The ratio of zinc precursor concentration to PVA polymer led to the enhanced carrier concentration of the resultant ZnO nanowire that enhanced, in turn, the sensing response toward ethanol vapor. The developed sensing elements have been systematically characterized to correlate their structural, morphological, and electrical properties with the respective room-temperature ethanol-sensing characteristics. The role of grain features and low activation energy of ZnO nanowires in coordination with the low dipole moment of ethanol resulted in the excellent response of 78 toward 100 ppm at room temperature with ultra-sensitive response and recovery times (9 and 12 s, respectively).

6.
ACS Appl Mater Interfaces ; 8(37): 24924-32, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27541012

RESUMO

The isotropic nature of the sensing elements decides the overall sensing performance of metal oxide gas/chemical sensors. Even a minimum deviation in the morphological and electrical characteristics of the sensing surface will lead to a nonuniform sensing performance, which in turn results in undesired figure of merits. With this background, the inhomogeneity of plasma discharge due to the racetrack effect of the magnetic field orbit in the planar magnetron and its significant influence on the formation of nanostructured ZnO thin films with desired uniformity has been investigated. The effect of the intensity of plasma discharges on the structural studies was a change in crystallite size from 11 to 35 nm. Anisotropic characteristics of the film influenced the mobility of carriers (10 and 220 cm(2) V(-1) s(-1)) by populating the carrier concentration (2.13 × 10(11) and 3.87 × 10(7) cm(-2)) in the nanostructures. Furthermore, the influence of this anisotropic surface of the obtained film on the room-temperature ethanol-sensing behavior is reported. The first observation of the racetrack effect on the sensing gradient of the sputter-deposited ZnO thin film has brought out the challenge in preparing an isotropic sensing element without anisotropy.

7.
J Nanosci Nanotechnol ; 16(1): 489-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27398478

RESUMO

Zinc oxide (ZnO) thin films were deposited on glass substrates using chemical spray pyrolysis technique at different substrate temperatures such as 523, 623 and 723 K. X-ray diffraction (XRD) patterns confirmed the formation of polycrystalline films with hexagonal wurtzite crystal structure and revealed the change in preferential orientation of the crystal planes. Scanning electron micrographs showed the formation of uniformly distributed spherical shaped grains at low deposition temperature and pebbles like structure at the higher temperature. Transmittance of 85% was observed for the film deposited at 723 K. The band gap of the films was found to be increased from 3.15 to 3.23 eV with a rise in deposition temperature. The electrical conductivity of the films was found to be improved with an increase in substrate temperature. Surface of ZnO thin films deposited at 523 K, 623 K and 723 K were found to be hydrophobic with the contact angles of 92°, 105° and 128° respectively. The room temperature gas sensing characteristics of all the films were studied and found that the film deposited at 623 K showed a better response towards ammonia vapour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...