Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2459: 93-103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35212958

RESUMO

When characterizing posttranslational modifications like phosphorylation, using efficient screening methods to map the phospho sites is essential, especially when dealing with large multi-domain proteins. NLRP3 (the NOD, LRR, and pyrin domain-containing protein 3), which initiates the formation of an NLRP3 inflammasome complex, is regulated posttranslationally by phosphorylation at several Ser and Tyr residues. However, determining sites of modification are not straightforward. For quick and reliable screening of the candidate phospho sites in NLRP3, we use a phospho dot blot assay which we describe here. This technique employs an in vitro kinase assay with a candidate kinase, Bruton's Tyrosine Kinase (BTK), and peptides derived from the region of interest in the protein that contains the potential phosphorylation sites. The reaction containing the phosphorylated peptides is quickly screened by a dot blot where the peptides are blotted with a commercially available anti-phospho-tyrosine antibody. This method can also be adapted to detect modified Ser or Thr residues and is an ideal screening assay to map phospho residues in NLRP3 or other proteins. This can be an initial screening procedure or can be complemented by other approaches such as site directed mutagenesis and by generating phospho site-specific antibodies.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Tirosina Quinase da Agamaglobulinemia , Immunoblotting , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosforilação
2.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34554188

RESUMO

Activity of the NLRP3 inflammasome, a critical mediator of inflammation, is controlled by accessory proteins, posttranslational modifications, cellular localization, and oligomerization. How these factors relate is unclear. We show that a well-established drug target, Bruton's tyrosine kinase (BTK), affects several levels of NLRP3 regulation. BTK directly interacts with NLRP3 in immune cells and phosphorylates four conserved tyrosine residues upon inflammasome activation, in vitro and in vivo. Furthermore, BTK promotes NLRP3 relocalization, oligomerization, ASC polymerization, and full inflammasome assembly, probably by charge neutralization, upon modification of a polybasic linker known to direct NLRP3 Golgi association and inflammasome nucleation. As NLRP3 tyrosine modification by BTK also positively regulates IL-1ß release, we propose BTK as a multifunctional positive regulator of NLRP3 regulation and BTK phosphorylation of NLRP3 as a novel and therapeutically tractable step in the control of inflammation.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tirosina/metabolismo , Animais , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
J Cell Sci ; 133(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273068

RESUMO

The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a fascinating cellular machinery endowed with the capacity for rapid proteolytic processing of the pro-inflammatory cytokine IL-1ß and the cell death effector gasdermin D (GSDMD). Although its activity is essential to fight infection and support tissue homeostasis, the inflammasome complex, which consists of the danger sensor NLRP3, the adaptor apoptosis-associated speck-like protein containing a CARD (ASC; also known as PYCARD), caspase-1 and probably other regulatory proteins, also bears considerable potential for detrimental inflammation, as observed in human conditions such as gout, heart attack, stroke and Alzheimer's disease. Thus, multi-layered regulatory networks are required to ensure the fine balance between rapid responsiveness versus erroneous activation (sufficient and temporally restricted versus excessive and chronic activity) of the inflammasome. These involve multiple activation, secretion and cell death pathways, as well as modulation of the subcellular localization of NLRP3, and its structure and activity, owing to post-translational modification by other cellular proteins. Here, we discuss the exciting progress that has recently been made in deciphering the regulation of the NLRP3 inflammasome. Additionally, we highlight open questions and describe areas of research that warrant further exploration to obtain a more comprehensive molecular and cellular understanding of the NLRP3 inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Apoptose , Caspase 1 , Citocinas , Humanos , Inflamação/genética , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...