Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 62(2): 207-221, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105116

RESUMO

Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1 and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus, SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci.


Assuntos
Montagem e Desmontagem da Cromatina , Inativação Gênica , Heterocromatina/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Acetilação , Sítios de Ligação , Ilhas de CpG , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica , Heterocromatina/química , Heterocromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Modelos Moleculares , Nucleossomos/enzimologia , Nucleossomos/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
J Biol Chem ; 289(51): 35087-101, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25331959

RESUMO

Genome-wide studies have revealed that genes commonly have a high density of RNA polymerase II just downstream of the transcription start site. This has raised the possibility that genes are commonly regulated by transcriptional elongation, but this remains largely untested in vivo, particularly in vertebrates. Here, we show that the proximal promoter from the Rhox5 homeobox gene recruits polymerase II and begins elongating in all tissues and cell lines that we tested, but it only completes elongation in a tissue-specific and developmentally regulated manner. Relief of the elongation block is associated with recruitment of the elongation factor P-TEFb, the co-activator GRIP1, the chromatin remodeling factor BRG1, and specific histone modifications. We provide evidence that two mechanisms relieve the elongation block at the proximal promoter: demethylation and recruitment of androgen receptor. Together, our findings support a model in which promoter proximal pausing helps confer tissue-specific and developmental gene expression through a mechanism regulated by DNA demethylation-dependent nuclear hormone receptor recruitment.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Especificidade de Órgãos , Testosterona/farmacologia , Elongação da Transcrição Genética/efeitos dos fármacos , Androgênios/farmacologia , Animais , Linhagem Celular , Células HeLa , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Camundongos , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândulas Seminais/crescimento & desenvolvimento , Glândulas Seminais/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Cell Biol ; 34(11): 2046-61, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24662054

RESUMO

Mit1 is the putative chromatin remodeling subunit of the fission yeast Snf2/histone deacetylase (HDAC) repressor complex (SHREC) and is known to repress transcription at regions of heterochromatin. However, how Mit1 modifies chromatin to silence transcription is largely unknown. Here we report that Mit1 mobilizes histone octamers in vitro and requires ATP hydrolysis and conserved chromatin tethering domains, including a previously unrecognized chromodomain, to remodel nucleosomes and silence transcription. Loss of Mit1 remodeling activity results in nucleosome depletion at specific DNA sequences that display low intrinsic affinity for the histone octamer, but its contribution to antagonizing RNA polymerase II (Pol II) access and transcription is not restricted to these sites. Genetic epistasis analyses demonstrate that SHREC subunits and the transcription-coupled Set2 histone methyltransferase, which is involved in suppression of cryptic transcription at actively transcribed regions, cooperate to silence heterochromatic transcripts. In addition, we have demonstrated that Mit1's remodeling activity contributes to SHREC function independently of Clr3's histone deacetylase activity on histone H3 K14. We propose that Mit1 is a chromatin remodeling factor that cooperates with the Clr3 histone deacetylase of SHREC and other chromatin modifiers to stabilize heterochromatin structure and to prevent access to the transcriptional machinery.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação Fúngica da Expressão Gênica , Heterocromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Nucleossomos/genética , Proteínas Repressoras/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Dados de Sequência Molecular , Interferência de RNA , RNA Polimerase II/antagonistas & inibidores , RNA Interferente Pequeno , Proteínas Repressoras/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcrição Gênica
4.
EMBO J ; 32(17): 2321-35, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23771057

RESUMO

Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4-mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4-mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi-deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Heterocromatina/metabolismo , Metiltransferases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , Heterocromatina/genética , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Lisina/metabolismo , Metiltransferases/genética , Mutação , Interferência de RNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Especificidade por Substrato , Telômero/genética , Telômero/metabolismo
5.
Mol Endocrinol ; 26(4): 538-49, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22322598

RESUMO

Mammalian male fertility depends on the epididymis, a highly segmented organ that promotes sperm maturation and protects sperm from oxidative damage. Remarkably little is known about how gene expression is controlled in the epididymis. A candidate to regulate genes crucial for epididymal function is reproductive homeobox gene on X chromosome (RHOX)5, a homeobox transcription factor essential for optimal sperm motility that is expressed in the caput region of the epididymis. Here, we report the identification of factors that control Rhox5 gene expression in epididymal cells in a developmentally regulated and region-specific fashion. First, we identify GATA transcription factor-binding sites in the Rhox5 proximal promoter (Pp) necessary for Rhox5 expression in epididymal cells in vitro and in vivo. Adjacent to the GATA sites are androgen-response elements, which bind to the nuclear hormone receptor androgen receptor (AR), and are responsible for the AR-dependent expression of Rhox5 in epididymal cells. We provide evidence that AR is recruited to the Pp in a region-specific and developmentally regulated manner in the epididymis that is dictated not only by differential AR availability but differential methylation of the Pp. Site-specific methylation of the Pp cytosine and guanine separated by one phosphate, most of which overlap with androgen-response elements, inhibited both AR occupancy at the Pp and Pp-dependent transcription in caput epididymal cells. Together, our data support a model in which DNA methylation, AR, and GATA factors collaborate to dictate the unique developmental and region-specific expression pattern of the RHOX5 homeobox transcription factor in the caput epididymis, which in turn controls the expression of genes critical for promoting sperm motility and function.


Assuntos
Metilação de DNA , Epididimo/metabolismo , Fatores de Transcrição GATA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Receptores Androgênicos/metabolismo , Fatores de Transcrição/genética , Androgênios/fisiologia , Animais , Linhagem Celular , Genes Reporter , Proteínas de Homeodomínio/metabolismo , Luciferases/biossíntese , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Receptores Androgênicos/genética , Elementos de Resposta , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Nat Struct Mol Biol ; 18(12): 1351-7, 2011 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-22081013

RESUMO

RNA interference (RNAi) is critical for the assembly of heterochromatin at Schizosaccharomyces pombe centromeres. Central to this process is the RNA-induced initiation of transcriptional gene silencing (RITS) complex, which physically anchors small noncoding RNAs to chromatin. RITS includes Ago1, the chromodomain protein Chp1, and Tas3, which forms a bridge between Chp1 and Ago1. Chp1 is a large protein with no recognizable domains, apart from its chromodomain. Here we describe how the structured C-terminal half of Chp1 binds the Tas3 N-terminal domain, revealing the tight association of Chp1 and Tas3. The structure also shows a PIN domain at the C-terminal tip of Chp1 that controls subtelomeric transcripts through a post-transcriptional mechanism. We suggest that the Chp1-Tas3 complex provides a solid and versatile platform to recruit both RNAi-dependent and RNAi-independent gene-silencing pathways for locus-specific regulation of heterochromatin.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/fisiologia , Inativação Gênica/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Sequência de Aminoácidos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Modelos Moleculares , Família Multigênica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Interferência de RNA/fisiologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
7.
Mol Cell Biol ; 31(6): 1275-87, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21245380

RESUMO

Histone H1 is an abundant and essential component of chromatin whose precise role in regulating gene expression is poorly understood. Here, we report that a major target of H1-mediated regulation in embryonic stem (ES) cells is the X-linked Rhox homeobox gene cluster. To address the underlying mechanism, we examined the founding member of the Rhox gene cluster-Rhox5-and found that its distal promoter (Pd) loses H1, undergoes demethylation, and is transcriptionally activated in response to loss of H1 genes in ES cells. Demethylation of the Pd is required for its transcriptional induction and we identified a single cytosine in the Pd that, when methylated, is sufficient to inhibit Pd transcription. Methylation of this single cytosine prevents the Pd from binding GA-binding protein (GABP), a transcription factor essential for Pd transcription. Thus, H1 silences Rhox5 transcription by promoting methylation of one of its promoters, a mechanism likely to extend to other H1-regulated Rhox genes, based on analysis of ES cells lacking DNA methyltransferases. The Rhox cluster genes targeted for H1-mediated transcriptional repression are also subject to another DNA methylation-regulated process: Xp imprinting. Remarkably, we found that only H1-regulated Rhox genes are imprinted, not those immune to H1-mediated repression. Together, our results indicate that the Rhox gene cluster is a major target of H1-mediated transcriptional repression in ES cells and that H1 is a candidate to have a role in Xp imprinting.


Assuntos
Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Impressão Genômica , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Células Cultivadas , Citosina/metabolismo , Metilases de Modificação do DNA/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Deleção de Genes , Genes Homeobox , Histonas/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Família Multigênica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
PLoS Genet ; 7(1): e1001268, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253571

RESUMO

Nucleosomes in heterochromatic regions bear histone modifications that distinguish them from euchromatic nucleosomes. Among those, histone H3 lysine 9 methylation (H3K9me) and hypoacetylation have been evolutionarily conserved and are found in both multicellular eukaryotes and single-cell model organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well-characterized heterochromatic region, is hardly affected in cells lacking the H3K9 methyltransferase Clr4. We document the existence of a pathway parallel to H3K9me ensuring gene repression in the absence of Clr4 and identify a silencing factor central to this pathway, Clr5. We find that Clr5 controls gene expression at multiple chromosomal locations in addition to affecting the mating-type region. The histone deacetylase Clr6 acts in the same pathway as Clr5, at least for its effects in the mating-type region, and on a subset of other targets, notably a region recently found to be prone to neo-centromere formation. The genomic targets of Clr5 also include Ste11, a master regulator of sexual differentiation. Hence Clr5, like the multi-functional Atf1 transcription factor which also modulates chromatin structure in the mating-type region, controls sexual differentiation and genome integrity at several levels. Globally, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Heterocromatina/genética , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Sequência de Aminoácidos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/enzimologia , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Metilação , Dados de Sequência Molecular , Mutação , Proteínas de Schizosaccharomyces pombe/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
PLoS Genet ; 6(10): e1001174, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21060862

RESUMO

Formation of centromeric heterochromatin in fission yeast requires the combined action of chromatin modifying enzymes and small RNAs derived from centromeric transcripts. Positive feedback mechanisms that link the RNAi pathway and the Clr4/Suv39h1 histone H3K9 methyltransferase complex (Clr-C) result in requirements for H3K9 methylation for full siRNA production and for siRNA production to achieve full histone methylation. Nonetheless, it has been proposed that the Argonaute protein, Ago1, is the key initial trigger for heterochromatin assembly via its association with Dicer-independent "priRNAs." The RITS complex physically links Ago1 and the H3-K9me binding protein Chp1. Here we exploit an assay for heterochromatin assembly in which loss of silencing by deletion of RNAi or Clr-C components can be reversed by re-introduction of the deleted gene. We showed previously that a mutant version of the RITS complex (Tas3(WG)) that biochemically separates Ago1 from Chp1 and Tas3 proteins permits maintenance of heterochromatin, but prevents its formation when Clr4 is removed and re-introduced. Here we show that the block occurs with mutants in Clr-C, but not mutants in the RNAi pathway. Thus, Clr-C components, but not RNAi factors, play a more critical role in assembly when the integrity of RITS is disrupted. Consistent with previous reports, cells lacking Clr-C components completely lack H3K9me2 on centromeric DNA repeats, whereas RNAi pathway mutants accumulate low levels of H3K9me2. Further supporting the existence of RNAi-independent mechanisms for establishment of centromeric heterochromatin, overexpression of clr4(+) in clr4Δago1Δ cells results in some de novo H3K9me2 accumulation at centromeres. These findings and our observation that ago1Δ and dcr1Δ mutants display indistinguishable low levels of H3K9me2 (in contrast to a previous report) challenge the model that priRNAs trigger heterochromatin formation. Instead, our results indicate that RNAi cooperates with RNAi-independent factors in the assembly of heterochromatin.


Assuntos
Proteínas de Ciclo Celular/genética , Heterocromatina/genética , Metiltransferases/genética , Interferência de RNA , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas Argonautas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/genética , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Lisina/metabolismo , Metilação , Metiltransferases/metabolismo , Mutação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Mol Cell ; 34(1): 36-46, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19362535

RESUMO

In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs during heterochromatin establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide reveals extensive sites of contact that contribute to Chp1's high-affinity binding. We found that this high-affinity binding is critical for the efficient establishment of centromeric heterochromatin, but preassembled heterochromatin can be maintained when Chp1's affinity for H3K9me is greatly reduced.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Sequência de Aminoácidos , Proteínas Argonautas , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Lisina/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
11.
J Biol Chem ; 283(7): 3866-76, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18077458

RESUMO

The X-linked mouse Rhox gene cluster contains more than 30 homeobox genes that are candidates to regulate multiple steps in male and female gametogenesis. The founding member of the Rhox gene cluster, Rhox5, is an androgen-dependent gene expressed in Sertoli cells that promotes the survival and differentiation of the adjacent male germ cells. Here, we report the first identification and characterization of a Rhox5-regulated gene. This gene, Unc5c, encodes a pro-apoptotic receptor with tumor suppressor activity that we found is negatively regulated by Rhox5 in the testis in vivo. Transfection analyses in cell lines of different origin indicated that Rhox5-dependent down-regulation of Unc5c requires another Sertoli cell-specific cofactor. Examination of other mouse Rhox family members revealed that mouse RHOX2 and RHOX3 also have the ability to down-regulate Unc5c expression. The human RHOX protein PEPP2 (RHOXF2) also had this ability, indicating that Unc5c repression is a conserved RHOX-dependent response. Deletion analysis identified a Rhox5-responsive element in the Unc5c 5'-untranslated region. Although 5'-untranslated regions typically house post-transcriptional elements, several lines of evidence indicated that Rhox5 down-regulates Unc5c at the transcriptional level. The repression of Unc5c expression by Rhox5 may, in part, mediate the pro-survival function of Rhox5 in the testis, as we found that Unc5c mutant mice have decreased germ cell apoptosis in the testis. Along with our other data, these findings led us to propose a model in which Rhox5 is a negative regulator upstream of Unc5c in a Sertoli-cell pathway that promotes germ-cell survival.


Assuntos
Proteínas de Homeodomínio/fisiologia , Receptores de Superfície Celular/genética , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Sequência de Bases , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Dados de Sequência Molecular , Receptores de Netrina
12.
J Biol Chem ; 279(12): 11570-81, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-14688261

RESUMO

The 12/15-lipoxygenases (12/15-LOX) catalyze the stereo-specific oxygenation of arachidonic and linoleic acids into a complex series of signaling molecules, including the hydroxyeicosatetraenoic acids (HETEs) and hydroxyoctadecadienoic acids (HODEs). Our previous studies, using high density oligonucleotide microarrays, suggested a novel link between progesterone receptor (PR) signaling and 12/15-LOX-mediated fatty acid metabolism in preimplantation mouse uterus. In this paper, using PR knockout mice, we established that the transcripts encoding leukocyte-12/15-LOX (L-12/15-LOX) and epidermal-12/15-LOX (E-12/15-LOX) are indeed downstream targets of regulation by PR in the uterine surface epithelium. Maximal induction of both L- and E-12/15-LOX on the day of implantation resulted in a marked increase in the uterine levels of the eicosanoids, 12-HETE, 15-HETE, and 13-HODE. Mice with null mutation in L-12/15-LOX had significantly reduced uterine levels of arachidonic acid metabolites and exhibited a partial impairment in implantation. Complete blockade of uterine 12/15-LOX activity by a specific inhibitor led to greater than 80% reduction in a number of implantation sites relative to untreated controls. Cell-based assays indicated that 12-HETE, 15-HETE, and 13-HODE function as activating ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), suggesting that this nuclear receptor could be a downstream target of 12/15-LOX-derived metabolites in the preimplantation uterus. Consistent with this hypothesis, administration of rosiglitazone, a potent PPARgamma-selective agonist, efficiently reversed inhibition of implantation by the 12/15-LOX-specific inhibitor. Rosiglitazone also induced a number of potential target genes of 12/15-LOX-derived metabolites in the pregnant uterus, indicating their regulation by PPARgamma. Collectively, our results uncovered a novel signaling pathway in which progesterone-induced synthesis of the 12/15-LOX-derived lipid mediators activates PPARgamma and its downstream gene networks, which in turn function as critical regulators of implantation in the mouse.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Eicosanoides/metabolismo , Implantação do Embrião , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Progesterona/metabolismo , Fatores de Transcrição/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Gravidez , RNA Mensageiro/genética , Receptores de Progesterona/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...