Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Parasitol ; 68(4): 832-841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831282

RESUMO

BACKGROUND: As per estimates by WHO in 2021 almost half of the world's population was at risk of malaria and > 0.6 million deaths were attributed to malaria. Therefore, the present study was aimed to explore the antimalarial activity of extracts derived from the leaves of the plant Anacardium occidentale L., which has been used traditionally for the treatment of malaria. Different extracts of A. occidentale leaves were prepared and tested for their inhibitory activity against recombinant P. falciparum transketolase (rPfTK) enzyme, in vitro. Further, growth inhibitory activity against cultivated blood stage P. falciparum parasites (3D7 strain), was studied using SYBR Green fluorescence-based in vitro assays. Acute toxicity of the hydro alcoholic extracts of leaves of A. occidentale (HELA) at different concentrations was evaluated on mice and Zebra fish embryos. HELA showed 75.45 ± 0.35% inhibitory activity against the recombinant PfTk and 99.31 ± 0.08% growth inhibition against intra-erythrocytic stages of P. falciparum at the maximum concentration (50 µg/ml) with IC50 of 4.17 ± 0.22 µg/ml. The toxicity test results showed that the heartbeat, somite formation, tail detachment and hatching of embryos were not affected when Zebra fish embryos were treated with 0.1 to 10 µg/ml of the extract. However, at higher concentrations of the extract, at 48 h (1000 µg/ml) and 96 h (100 µg/ml and 1000 µg/ml, respectively) there was no heartbeat in the fish embryos. In the acute oral toxicity tests performed on mice, the extract showed no toxicity up to 300 mg/kg body weight in mice. CONCLUSION: The hydro-alcoholic extract of leaves of A. occidentale L. showed potent antimalarial activity against blood stage P. falciparum. Based on the observed inhibitory activity on the transketolase enzyme of P. falciparum it is likely that this enzyme is the target for the development of bioactive molecules present in the plant extracts. The promising anti-malarial activity of purified compounds from leaves of A. occidentale needs to be further explored for development of new anti-malarial therapy.


Assuntos
Anacardium , Antimaláricos , Malária Falciparum , Malária , Animais , Camundongos , Antimaláricos/toxicidade , Plasmodium falciparum , Transcetolase/uso terapêutico , Peixe-Zebra , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Extratos Vegetais/farmacologia
2.
ACS Omega ; 8(29): 25727-25738, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521601

RESUMO

The receptor for advanced glycation end products (RAGE) is a transmembrane protein that interacts with its ligands, advanced glycation end products (AGEs). AGEs are elevated in diabetes and diabetic complications, leading to increased oxidative stress and activation of pro-inflammatory pathways facilitated by AGE-RAGE signaling. Polymorphisms in the RAGE gene can potentially affect AGE-RAGE interaction and its downstream signaling, which plays a crucial role in the progression of diabetes and its complications. In this study, we used nanopore sequencing for genotyping of RAGE polymorphism and identified a maximum number of 33 polymorphisms, including two previously unreported novel mutations in a cohort of healthy, type 2 diabetics without nephropathy and type 2 diabetics with nephropathy in order to identify associations. Two novel RAGE polymorphisms in the intron 8 and 3'UTR region at genomic locations 32181834 and 32181132, respectively, were detected with a low frequency. For four previously reported polymorphisms, cross-validation by PCR-RFLP showed 99.75% concordance with nanopore sequencing. Analysis of genotype distribution and allele frequencies revealed that five single nucleotide polymorphisms, i.e., rs1800625, rs3131300, rs3134940, rs2070600, and rs9391855, were associated with an increased risk for type 2 diabetes.

3.
J Infect Public Health ; 16(8): 1290-1300, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331277

RESUMO

BACKGROUND: Modern response to pandemics, critical for effective public health measures, is shaped by the availability and integration of diverse epidemiological outbreak data. Tracking variants of concern (VOC) is integral to understanding the evolution of SARS-CoV-2 in space and time, both at the local level and global context. This potentially generates actionable information when integrated with epidemiological outbreak data. METHODS: A city-wide network of researchers, clinicians, and pathology diagnostic laboratories was formed for genome surveillance of COVID-19 in Pune, India. The genomic landscapes of 10,496 sequenced samples of SARS-CoV-2 driving peaks of infection in Pune between December-2020 to March-2022, were determined. As a modern response to the pandemic, a "band of five" outbreak data analytics approach was used. This integrated the genomic data (Band 1) of the virus through molecular phylogenetics with key outbreak data including sample collection dates and case numbers (Band 2), demographics like age and gender (Band 3-4), and geospatial mapping (Band 5). RESULTS: The transmission dynamics of VOCs in 10,496 sequenced samples identified B.1.617.2 (Delta) and BA(x) (Omicron formerly known as B.1.1.529) variants as drivers of the second and third peaks of infection in Pune. Spike Protein mutational profiling during pre and post-Omicron VOCs indicated differential rank ordering of high-frequency mutations in specific domains that increased the charge and binding properties of the protein. Time-resolved phylogenetic analysis of Omicron sub-lineages identified a highly divergent BA.1 from Pune in addition to recombinant X lineages, XZ, XQ, and XM. CONCLUSIONS: The band of five outbreak data analytics approach, which integrates five different types of data, highlights the importance of a strong surveillance system with high-quality meta-data for understanding the spatiotemporal evolution of the SARS-CoV-2 genome in Pune. These findings have important implications for pandemic preparedness and could be critical tools for understanding and responding to future outbreaks.


Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Filogenia , Índia/epidemiologia , Genômica
4.
ChemMedChem ; 18(9): e202200709, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36751095

RESUMO

Herein we report the synthesis and evaluation of peptide-histidinal conjugated drug scaffolds, which have the potential to target the hemoglobin-degrading proteases falcipain-2/3 from the human malaria parasite. Scaffolds with various substitutions were tested for antimalarial activity, and compounds 8 g, 8 h, and 15 exhibited EC50 values of ∼0.018 µM, ∼0.069 µM, and ∼0.02 µM, respectively. Structure-based docking studies on falcipain-2/3 proteases (PDB:2GHU and PDB:3BWK) revealed that compounds 8 g, 8 h, and 15 interact strongly with binding sites of falcipain-2/3 in a substrate-like manner. In silico ADME studies revealed that the molecules of interest showed no or minimal violations of drug-likeness parameters. Further, phenotypic assays revealed that compound 8 g and its biotinylated version inhibit hemoglobin degradation in the parasite food vacuole. The identification of falcipain-2/3 targeting potent inhibitors of the malaria parasite can serve as a starting point for the development of lead compounds as future antimalarial drug candidates.


Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/química , Plasmodium falciparum , Malária/tratamento farmacológico , Hemoglobinas/metabolismo
5.
Mol Biochem Parasitol ; 252: 111525, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209797

RESUMO

BACKGROUND: Malaria infection can result in distinct clinical outcomes from asymptomatic to severe. The association between patho-physiological changes and molecular changes in the host, and their correlation with severity of malaria progression is not fully understood. METHODS: In this study, we addressed mass spectrometry-based temporal profiling of serum metabolite levels from mice infected with Plasmodium berhgei (strain ANKA). RESULTS: We show global perturbations and identify changes in specific metabolites in correlation with disease progression. While metabolome-wide changes were apparent in late-stage malaria, a subset of metabolites exhibited highly correlated changes with disease progression. These metabolites changed early on following infection and either continued or maintained the change as mice developed severe disease. Some of these have the potential to be sentinel metabolites for severe malaria. Moreover, glycolytic metabolites, purine nucleotide precursors, tryptophan and its bioactive derivatives were many fold decreased in late-stage disease. Interestingly, uric acid, a metabolic waste reported to be elevated in severe human malaria, increased with disease progression, and subsequently appears to be detoxified into allantoin. This detoxification mechanism is absent in humans as they lack the enzyme uricase. CONCLUSIONS: We have identified candidate marker metabolites that may be of relevance in the context of human malaria.


Assuntos
Malária , Parasitos , Camundongos , Animais , Humanos , Metabolômica , Malária/parasitologia , Metaboloma , Progressão da Doença , Plasmodium berghei
6.
Metab Eng ; 74: 61-71, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152932

RESUMO

Glycosylation of recombinant therapeutics like monoclonal antibodies (mAbs) is a critical quality attribute. N-glycans in mAbs are known to affect various effector functions, and thereby therapeutic use of such glycoproteins can depend on a particular glycoform profile to achieve desired efficacy. However, there are currently limited options for modulating the glycoform profile, which depend mainly on over-expression or knock-out of glycosyltransferase enzymes that can introduce or eliminate specific glycans but do not allow predictable glycoform modulation over a range of values. In this study, we demonstrate the ability to predictably modulate the glycoform profile of recombinant IgG. Using CRISPR/Cas9, we have engineered nucleotide sugar synthesis pathways in CHO cells expressing recombinant IgG for combinatorial modulation of galactosylation and fucosylation. Knocking out the enzymes UDP-galactose 4'-epimerase (Gale) and GDP-L-fucose synthase (Fx) resulted in ablation of de novo synthesis of UDP-Gal and GDP-Fuc. With Gale knock-out, the array of N-glycans on recombinantly expressed IgG is narrowed to agalactosylated glycans, mainly A2F glycan (89%). In the Gale and Fx double knock-out cell line, agalactosylated and afucosylated A2 glycan is predominant (88%). In the double knock-out cell line, galactosylation and fucosylation was entirely dependent on the salvage pathway, which allowed for modulation of UDP-Gal and GDP-Fuc synthesis and intracellular nucleotide sugar availability by controlling the availability of extracellular galactose and fucose. We demonstrate that the glycoform profile of recombinant IgG can be modulated from containing predominantly agalactosylated and afucosylated glycans to up to 42% and 96% galactosylation and fucosylation, respectively, by extracellular feeding of sugars in a dose-dependent manner. By simply varying the availability of extracellular galactose and/or fucose, galactosylation and fucosylation levels can be simultaneously and independently modulated. In addition to achieving the production of tailored glycoforms, this engineered CHO host platform can cater to the rapid synthesis of variably glycoengineered proteins for evaluation of biological activity.


Assuntos
Fucose , Galactose , Cricetinae , Animais , Células CHO , Cricetulus , Glicosilação , Fucose/genética , Fucose/metabolismo , Galactose/genética , Galactose/metabolismo , Polissacarídeos/genética , Anticorpos Monoclonais/genética , Imunoglobulina G , Nucleotídeos/metabolismo , Difosfato de Uridina/metabolismo
7.
Am J Trop Med Hyg ; 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189595

RESUMO

Human babesiosis is a rare disease, caused by Babesia species and commonly transmitted by tick bite. Although human babesiosis is known to be asymptomatic in immunocompetent hosts, clinical cases of severe babesiosis have been reported from splenectomized or immunocompromised individuals. To our knowledge, only one case of human babesiosis in India has been previously reported. Here, we report a case of severe babesiosis with high parasitemia (∼70%) in a 30-year-old asplenic farmer. The patient presented with fever, yellowish discoloration of skin, oliguria, and anemia; he eventually developed multiorgan failure syndrome and died. Peripheral blood films were prepared and used to confirm the presence of piroplasms by microscopy. Total DNA isolated from blood was used for 18S ribosomal RNA gene fragment amplification by polymerase chain reaction, which was subject to Sanger sequencing. Although 18S sequence indicated that the Babesia species infecting the patient was similar to that of other Babesia species originating from wild mammals, species identification could not be done. Phylogenetic analysis revealed that the patient-derived pathogen is distinct because it forms a separate clade in the cladogram.

8.
Inorg Chem ; 60(23): 17593-17607, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34767343

RESUMO

In this work, we have synthesized a series of novel C,N-cyclometalated 2H-indazole-ruthenium(II) and -iridium(III) complexes with varying substituents (H, CH3, isopropyl, and CF3) in the R4 position of the phenyl ring of the 2H-indazole chelating ligand. All of the complexes were characterized by 1H, 13C, high-resolution mass spectrometry, and elemental analysis. The methyl-substituted 2H-indazole-Ir(III) complex was further characterized by single-crystal X-ray analysis. The cytotoxic activity of new ruthenium(II) and iridium(III) compounds has been evaluated in a panel of triple negative breast cancer (TNBC) cell lines (MDA-MB-231 and MDA-MB-468) and colon cancer cell line HCT-116 to investigate their structure-activity relationships. Most of these new complexes have shown appreciable activity, comparable to or significantly better than that of cisplatin in TNBC cell lines. R4 substitution of the phenyl ring of the 2H-indazole ligand with methyl and isopropyl substituents showed increased potency in ruthenium(II) and iridium(III) complexes compared to that of their parent compounds in all cell lines. These novel transition metal-based complexes exhibited high specificity toward cancer cells by inducing alterations in the metabolism and proliferation of cancer cells. In general, iridium complexes are more active than the corresponding ruthenium complexes. The new Ir(III)-2H-indazole complex with an isopropyl substituent induced mitochondrial damage by generating large amounts of reactive oxygen species (ROS), which triggered mitochondrion-mediated apoptosis in TNBC cell line MDA-MB-468. Moreover, this complex also induced G2/M phase cell cycle arrest and inhibited cellular migration of TNBC cells. Our findings reveal the key roles of the novel C-N-cyclometalated 2H-indazole-Ir(III) complex to specifically induce toxicity in cancer cell lines through contributing effects of ROS-induced mitochondrial disruption along with chromosomal and mitochondrial DNA target inhibition.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Indazóis/farmacologia , Irídio/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indazóis/química , Irídio/química , Estrutura Molecular , Teoria Quântica , Neoplasias de Mama Triplo Negativas/patologia
9.
Front Mol Biosci ; 8: 631281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124142

RESUMO

Plasmodium falciparum is a causative agent for malaria and has a complex life cycle in human and mosquito hosts. During its life cycle, the malarial parasite Plasmodium goes through different asexual and sexual stages, in humans and mosquitoes. Expression of stage-specific proteins is important for successful completion of its life cycle and requires tight gene regulation. In the case of Plasmodium, due to relative paucity of the transcription factors, it is postulated that posttranscriptional regulation plays an important role in stage-specific gene expression. Translation repression of specific set of mRNA has been reported in gametocyte stages of the parasite. A conserved element present in the 3'UTR of some of these transcripts was identified. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K2A) was identified as the protein that associates with these RNA. We now show that the RNA binding activity of PIP4K2A is independent of its kinase activity. We also observe that PIP4K2A is imported into the parasite from the host on Plasmodium berghei and Toxoplasma gondii. The RNA binding activity of PIP4K2A seems to be conserved across species from Drosophila and C. elegans to humans, suggesting that the RNA binding activity of PIP4K may be important, and there may be host transcripts that may be regulated by PIP4K2A. These results identify a novel RNA binding role for PIP4K2A that may not only play a role in Plasmodium propagation but may also function in regulating gene expression in multicellular organisms.

10.
Planta ; 253(2): 61, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538903

RESUMO

MAIN CONCLUSION: During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding. Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.


Assuntos
Produtos Agrícolas/metabolismo , Domesticação , Frutas , Redes e Vias Metabólicas , Melhoramento Vegetal , Produtos Agrícolas/genética , Ecossistema , Frutas/genética , Frutas/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-33582286

RESUMO

Inflammation is a constant in Non-Alcoholic Fatty Liver Disease (NAFLD), although their relationship is unclear. In a transgenic zebrafish system with chronic systemic overexpression of human IL6 (IL6-OE) we show that inflammation can cause intra-hepatic accumulation of triglycerides. Transcriptomics and proteomics analysis of the IL6-OE liver revealed a deregulation of glycolysis/gluconeogenesis pathway, especially a striking down regulation of the glycolytic enzyme aldolase b. Metabolomics analysis by mass spectrometry showed accumulation of hexose monophosphates and their derivatives, which can act as precursors for triglyceride synthesis. Our results suggest that IL6-driven repression of glycolysis/gluconeogenesis, specifically aldolase b, may be a novel mechanism for fatty liver. This mechanism may be relevant for NAFLD in lean individuals, an emerging class of NAFLD prevalent more in Asian Indian populations.


Assuntos
Animais Geneticamente Modificados , Glicólise/genética , Interleucina-6 , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Peixe-Zebra , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Células Hep G2 , Humanos , Interleucina-6/biossíntese , Interleucina-6/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
Nat Commun ; 11(1): 2926, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522991

RESUMO

Metabolic changes alter the cellular milieu; can this also change intracellular protein folding? Since proteostasis can modulate mutational buffering, if change in metabolism has the ability to change protein folding, arguably, it should also alter mutational buffering. Here we find that altered cellular metabolic states in E. coli buffer distinct mutations on model proteins. Buffered-mutants have folding problems in vivo and are differently chaperoned in different metabolic states. Notably, this assistance is dependent upon the metabolites and not on the increase in canonical chaperone machineries. Being able to reconstitute the folding assistance afforded by metabolites in vitro, we propose that changes in metabolite concentrations have the potential to alter protein folding capacity. Collectively, we unravel that the metabolite pools are bona fide members of proteostasis and aid in mutational buffering. Given the plasticity in cellular metabolism, we posit that metabolic alterations may play an important role in cellular proteostasis.


Assuntos
Proteostase/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Metaboloma/genética , Mutação/genética , Pressão Osmótica/fisiologia , Dobramento de Proteína , Proteostase/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-32071059

RESUMO

We report a systematic, cellular phenotype-based antimalarial screening of the Medicines for Malaria Venture Pathogen Box collection, which facilitated the identification of specific blockers of late-stage intraerythrocytic development of Plasmodium falciparum First, from standard growth inhibition assays, we identified 173 molecules with antimalarial activity (50% effective concentration [EC50] ≤ 10 µM), which included 62 additional molecules over previously known antimalarial candidates from the Pathogen Box. We identified 90 molecules with EC50 of ≤1 µM, which had significant effect on the ring-trophozoite transition, while 9 molecules inhibited the trophozoite-schizont transition and 21 molecules inhibited the schizont-ring transition (with ≥50% parasites failing to proceed to the next stage) at 1 µM. We therefore rescreened all 173 molecules and validated hits in microscopy to prioritize 12 hits as selective blockers of the schizont-ring transition. Seven of these molecules inhibited the calcium ionophore-induced egress of Toxoplasma gondii, a related apicomplexan parasite, suggesting that the inhibitors may be acting via a conserved mechanism which could be further exploited for target identification studies. We demonstrate that two molecules, MMV020670 and MMV026356, identified as schizont inhibitors in our screens, induce the fragmentation of DNA in merozoites, thereby impairing their ability to egress and invade. Further mechanistic studies would facilitate the therapeutic exploitation of these molecules as broadly active inhibitors targeting late-stage development and egress of apicomplexan parasites relevant to human health.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Fragmentação do DNA/efeitos dos fármacos , Humanos , Merozoítos/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Esquizontes/efeitos dos fármacos , Trofozoítos/efeitos dos fármacos
14.
RSC Adv ; 10(70): 43085-43091, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35514935

RESUMO

A new nigericin analogue that has been chemically modified was synthesized through a fluorination process from the parent nigericin, produced from a novel Streptomyces strain DASNCL-29. Fermentation strategies were designed for the optimised production of nigericin molecule and subjected for purification and structural analysis. The fermentation process resulted in the highest yield of nigericin (33% (w/w)). Initially, nigericin produced from the strain DASNCL-29 demonstrated polymorphism in its crystal structure, i.e., monoclinic and orthorhombic crystal lattices when crystallised with methanol and hexane, respectively. Furthermore, nigericin produced has been subjected to chemical modification by fluorination to enhance its efficacy. Two fluorinated analogues revealed that they possess a very potent antibacterial activity against Gram positive and Gram negative bacteria. To date, the nigericin molecule has not been reported for any reaction against Gram-negative bacteria, which are increasingly becoming resistant to antibiotics. For the first time, fluorinated analogues of nigericin have shown promising activity. In vitro cytotoxicity analysis of fluorinated analogues demonstrated tenfold lesser toxicity than the parent nigericin. This is the first type of study where the fluorinated analogues of nigericin showed very encouraging activity against Gram-negative organisms; moreover, they can be used as a candidate for treating many serious infections.

15.
Nucleic Acids Res ; 48(D1): D992-D1005, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31680154

RESUMO

The volume of biological, chemical and functional data deposited in the public domain is growing rapidly, thanks to next generation sequencing and highly-automated screening technologies. These datasets represent invaluable resources for drug discovery, particularly for less studied neglected disease pathogens. To leverage these datasets, smart and intensive data integration is required to guide computational inferences across diverse organisms. The TDR Targets chemogenomics resource integrates genomic data from human pathogens and model organisms along with information on bioactive compounds and their annotated activities. This report highlights the latest updates on the available data and functionality in TDR Targets 6. Based on chemogenomic network models providing links between inhibitors and targets, the database now incorporates network-driven target prioritizations, and novel visualizations of network subgraphs displaying chemical- and target-similarity neighborhoods along with associated target-compound bioactivity links. Available data can be browsed and queried through a new user interface, that allow users to perform prioritizations of protein targets and chemical inhibitors. As such, TDR Targets now facilitates the investigation of drug repurposing against pathogen targets, which can potentially help in identifying candidate targets for bioactive compounds with previously unknown targets. TDR Targets is available at https://tdrtargets.org.


Assuntos
Quimioinformática/métodos , Biologia Computacional/métodos , Bases de Dados Factuais , Descoberta de Drogas/métodos , Genômica/métodos , Software , Reposicionamento de Medicamentos , Genoma , Humanos , Ferramenta de Busca , Design de Software , Interface Usuário-Computador
16.
Exp Parasitol ; 206: 107771, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31585116

RESUMO

A PCR targeting mitochondrial cytochrome oxidase subunit III (cox3) for molecular detection of Babesia gibsoni infection in dogs has been developed in this study. Fifty blood samples from suspected clinical cases from dogs, brought to the veterinary college clinics, were examined for presence of B. gibsoni using conventional diagnosis by microscopic examination of Giemsa stained thin blood smears. In addition, species specific PCRs targeting ITS-1 region (BgITS-1 PCR) and nested PCR targeting 18S ribosomal RNA gene (Bg18SnPCR) were carried out. A 634 bp PCR fragment of B. gibsoni cox3 gene was amplified in positive samples from three geographical locations of Satara, Wai and Pune in Maharashtra state of India. From analysis of the sequence of the B. gibsoni cox3 gene, we found that the Indian isolate had 96-98% similarity to the isolate from Japan and China. Post sequencing, de-novo diagnostic primer pair for species specific amplification of 164 bp fragment of B. gibsonicox3 was designed and the PCR was standardized. The diagnostic results of de-novo Bgcox3 PCR were compared with BgITS-1 PCR and Bg18S nPCR. Thin blood smears detected 22% (11/50) samples positive for small form of Babesia species. The BgITS-1 PCR detected 25% samples (15/50) as positive and Bg18S nPCR detected 80% (40/50) B. gibsoni positive samples. The de-novo Bgcox3 PCR detected 66% (33/50) samples positive for B. gibsoni (at 95% CI). The analytical sensitivity of cox3 PCR was evaluated as 0.000003% parasitaemia or 09 parasites in 100  µl of blood. The de-novo diagnostic cox3 PCR did not cross react with control positive DNA from other haemoprotozoa and rickettsia like B. vogeli, Hepatozoon canis, Trypanosoma evansi, Ehrlichia canis and Anaplasma platys. Statistically, cox3 PCR had better diagnostic efficiency than ITS-1 PCR in terms of sensitivity (p = 0.0006). No statistically significant difference between results of cox3 PCR and 18S nPCR was observed (p = 0.1760). Kappa values estimated for each test pair showed fair to moderate agreement between the observations. Specificity of Bgcox3 PCR was 100% when compared with microscopy or BgITS-1 PCR. Sensitivity of Bgcox3 PCR was 100% when compared with that of Bg18S nPCR.


Assuntos
Babesia/isolamento & purificação , Babesiose/diagnóstico , Doenças do Cão/diagnóstico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/enzimologia , Animais , Babesia/classificação , Babesia/genética , Babesiose/parasitologia , Sequência de Bases , Reações Cruzadas , DNA Espaçador Ribossômico/química , Doenças do Cão/parasitologia , Cães , Eritrócitos/parasitologia , Funções Verossimilhança , Filogenia , Reação em Cadeia da Polimerase/veterinária , Valor Preditivo dos Testes , RNA Ribossômico 18S/análise , Sensibilidade e Especificidade , Alinhamento de Sequência/veterinária
17.
Org Biomol Chem ; 17(18): 4535-4542, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30994681

RESUMO

Toxoplasma gondii is a ubiquitous eukaryotic pathogen responsible for toxoplasmosis in humans and animals. This parasite is an obligate intracellular pathogen and actively invades susceptible host cells, a process which is mediated by specific receptor-ligand interactions. Here, we have identified an unnatural 2,4-disulfated d-glucuronic acid (Di-S-GlcA), a hexuronic acid composed of heparin/heparan sulfate, as a potential carbohydrate ligand that can selectively bind to T. gondii parasites. More importantly, the gelatin conjugated Di-S-GlcA multivalent probe displayed strong inhibition of parasite entry into host cells. These results open perspective for the future use of Di-S-GlcA epitopes in biomedical applications against toxoplasmosis.


Assuntos
Glucuronatos/farmacologia , Toxoplasma/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Fibroblastos/microbiologia , Glucuronatos/síntese química , Glucuronatos/metabolismo , Humanos , Ligantes , Toxoplasma/metabolismo , Toxoplasma/patogenicidade
19.
PLoS Biol ; 17(3): e3000176, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30840617

RESUMO

[This corrects the article DOI: 10.1371/journal.pbio.2006128.].

20.
J Biomol Struct Dyn ; 37(10): 2669-2677, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30052127

RESUMO

Kunitz-type trypsin inhibitors bind to the active pocket of trypsin causing its inhibition. Plant Kunitz-type inhibitors are thought to be important in defense, especially against insect pests. From sequence analysis of various Kunitz-type inhibitors from plants, we identified CaTI2 from chickpea as a unique variant lacking the functionally important arginine residue corresponding to the soybean trypsin inhibitor (STI) and having a distinct and unique inhibitory loop organization. To further explore the implications of these sequence variations, we obtained the crystal structure of recombinant CaTI2 at 2.8Å resolution. It is evident from the structure that the variations in the inhibitory loop facilitates non-substrate like binding of CaTI2 to trypsin, while the canonical inhibitor STI binds to trypsin in substrate like manner. Our results establish the unique mechanism of trypsin inhibition by CaTI2, which warrant further research into its substrate spectrum. Abbreviations BApNA Nα-Benzoyl-L-arginine 4-nitroanilide BPT bovine pancreatic trypsin CaTI2 Cicer arietinum L trypsin inhibitor 2 DrTI Delonix regia Trypsin inhibitor EcTI Enterolobium contortisiliquum trypsin inhibitor ETI Erythrina caffra trypsin inhibitor KTI Kunitz type inhibitor STI soybean trypsin inhibitor TKI Tamarindus indica Kunitz inhibitor Communicated By Ramaswamy H. Sarma.


Assuntos
Cicer/química , Modelos Moleculares , Extratos Vegetais/química , Inibidor da Tripsina de Soja de Kunitz/química , Inibidores da Tripsina/química , Tripsina/química , Sequência de Aminoácidos , Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Ativação Enzimática , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/farmacologia , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes , Análise Espectral , Relação Estrutura-Atividade , Inibidor da Tripsina de Soja de Kunitz/farmacologia , Inibidores da Tripsina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...