Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1404012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983632

RESUMO

Dental caries is a common human oral disease worldwide, caused by an acid-producing bacteria Streptococcus mutans. The use of synthetic drugs and antibiotics to prevent dental caries has been increasing, but this can lead to severe side effects. To solve this issue, developing and developed countries have resorted to herbal medicines as an alternative to synthetic drugs for the treatment and prevention of dental caries. Therefore, there is an urgent need for plant-derived products to treat such diseases. Bacopa monnieri, a well-documented medicinal plant, contains 52 phytocompounds, including the pentacyclic triterpenoid metabolite known as asiatic acid (ASTA). Hence, this study aimed to demonstrate, for the first time, the antibacterial activity of phytocompound ASTA against S. mutans. The findings revealed that ASTA significantly inhibited the growth of S. mutans and the production of virulence factors such as acidurity, acidogenicity, and eDNA synthesis. Molecular docking analysis evaluated the potential activity of ASTA against S. mutans virulence genes, including VicR and GtfC. Furthermore, toxicity assessment of ASTA in human buccal epithelial cells was performed, and no morphological changes were observed. An in vivo analysis using Danio rerio (zebrafish) confirmed that the ASTA treatment significantly increased the survival rates of infected fish by hindering the intestinal colonization of S. mutans. Furthermore, the disease protection potential of ASTA against the pathognomonic symptom of S. mutans infection was proven by the histopathological examination of the gills, gut, and kidney. Overall, these findings suggest that ASTA may be a promising therapeutic and alternative drug for the treatment and prevention of oral infection imposed by S. mutans.

2.
Glycobiology ; 34(4)2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38335248

RESUMO

Protein-carbohydrate interactions are involved in several cellular and biological functions. Integrating structure and function of carbohydrate-binding proteins with disease-causing mutations help to understand the molecular basis of diseases. Although databases are available for protein-carbohydrate complexes based on structure, binding affinity and function, no specific database for mutations in human carbohydrate-binding proteins is reported in the literature. We have developed a novel database, CarbDisMut, a comprehensive integrated resource for disease-causing mutations with sequence and structural features. It has 1.17 million disease-associated mutations and 38,636 neutral mutations from 7,187 human carbohydrate-binding proteins. The database is freely available at https://web.iitm.ac.in/bioinfo2/carbdismut. The web-site is implemented using HTML, PHP and JavaScript and supports recent versions of all major browsers, such as Firefox, Chrome and Opera.


Assuntos
Carboidratos , Humanos , Bases de Dados Factuais , Mutação
3.
Indian J Pharmacol ; 51(1): 31-39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031465

RESUMO

CONTEXT: Homology modeling plays role in determining the therapeutic targets dreadful for condition such as neurodegenerative diseases (NDD), which pose challenge in achieving the effective managements. The structures of the serotonin transporter (SERT), aquaporin (AQP), and tropomyosin receptor kinase (TrkA) which are implicated in NDD pathology are still unknown for Lumbricus terrestris, but the three-dimensional (3D) structure of the human counterpart for modeling. AIM: This study aims to generate and evaluate the 3D structure of TrkA, SERT, and AQP proteins and their interaction with the ligands, namely Asiaticoside-D (AD) and levodopa (L-DOPA) the anti-NDD agents. SUBJECTS AND METHODS: Homology modeling for SERT, AQP, and TrkA proteins of Lumbricus terrestris using SWISS-MODEL Server and the modeled structure was validated using Rampage Server. Wet-lab analysis of their correspondent m-RNA levels was also done to validate the in silico data. RESULTS: It was found that TrkA had moderately high homology (67%) to human while SERT and AQP could exhibit 58% and 42%, respectively. The reliability of the model was assessed by Ramachandran plot analysis. Interactions of AD with the SERT, AQP-4, and TrkA showed the binding energies as -9.93, 8.88, and -7.58 of Kcal/mol, respectively, while for L-DOPA did show -3.93, -5.13, and -6.0 Kcal/mol, respectively. The levels of SERT, TrkA, and AQP-4 were significantly reduced (P < 0.001) on ROT induced when compared to those of control worms. On ROT + AD supplementation group (III), m-RNA levels were significantly increased (P < 0.05) when compared to those of ROT induced worms (group II). CONCLUSION: Our pioneering docking data propose the possible of target which is proved useful for therapeutic investigations against the unconquered better of NDD.


Assuntos
Aquaporinas/metabolismo , Levodopa/farmacologia , Modelos Moleculares , Fármacos Neuroprotetores/farmacologia , Receptor trkA/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Triterpenos/farmacologia , Animais , Aquaporinas/genética , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/lesões , Gânglios dos Invertebrados/metabolismo , Oligoquetos , Receptor trkA/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
4.
Protein Pept Lett ; 25(4): 379-389, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29473490

RESUMO

BACKGROUND: Protein-carbohydrate interactions play vital roles in several biological processes in living organisms. The comparative analysis of binding site residues along with stabilizing residues in protein-carbohydrate complexes provides ample insights to understand the structure, function and recognition mechanism. OBJECTIVE: The main objective of this study is to identify and analyze the residues, which are involved in both folding and binding of the protein-carbohydrate complexes. METHODS: We have identified the stabilizing residues using the knowledge of hydrophobicity, longrange interactions and conservation, as well as binding site residues using a distance cutoff of 3.5Å between any heavy atoms in protein and ligand. Residues, which are common in stabilizing and binding, are termed as key residues. These key resides are analyzed with various sequence and structure based parameters such as frequency of occurrence, surrounding hydrophobicity, longrange order and conservation score. RESULTS: In this work, we have identified 2.45% binding site residues in a non-redundant dataset of 1130 complexes using distance-based criteria and 7.07% stabilizing residues using the concepts of hydrophobicity, long-range interactions and conservation of residues. Further, 5.9% of binding and 2.04% of stabilizing residues are common to each other, which are termed as key residues. The key residues have been analysed based on protein classes, carbohydrate types, gene ontology functional classifications, amino acid preference and structure-based parameters. We found that all-ß, α+ß and α/ß have more key residues than other protein classes and most of the KRs are present in ß-strands, which shows their importance in stability and binding of complexes. On the ligand side, Lsaccharide has the highest number of key residues and it has a high percentage of KRs in SRs and BRs than other carbohydrate types. Further, polar and charged residues have a high tendency to serve as key residues. Classifications based on gene ontology terms revealed that Lys is preferred in all the three groups: molecular functions, biological processes and cellular components. Key residues have 6 to 9 contacts within the protein and make only one contact with the carbohydrate ligand. These contacts are dominant to form polar-nonpolar contacts followed by the contacts between charged atoms. Further, the influence of sequence and structural parameters such as surrounding hydrophobicity, solvent accessibility, secondary structure, long-range order and conservation score has been discussed. CONCLUSION: The results obtained in the present work provide deep insights for understanding the interplay between stability and binding in protein-carbohydrate complexes.


Assuntos
Carboidratos/química , Modelos Moleculares , Proteínas/química , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Solventes/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA