Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 235: 116676, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453504

RESUMO

The current study demonstrates the potential of Cassia fistula seed carbon (CFSC), a waste lignocellulosic biomass, to eliminate Cd (II) ion-from saturated liquid samples. The efficient removal of about 93.2% (w/v) of Cd (II) ions from 10 mg/L concentration was achieved within 80 min of treatment. The CFSC dosage of 100 mg/50 mL accounted as optimal for enhanced Cd (II) removal. Cd (II) adsorption onto CFSC was observed to be maximum at pH 6. The investigational trials were assessed with three isotherm models such Dubinin-Radushkevich, Freundlich, and Langmuir. The specifications obtained from this experimental study align well with the Langmuir isotherm model, which describes the maximal adsorption capacity of 68.02 mg/g. Cd (II) adsorption data from this study exhibited the R2 of 0.9 under pseudo-second-order. Maximum desorption (76.3% w/v) was obtained with 0.3 M HCL. This study revealed that thermally activated C. fistula seed carbon (CFSC) can be tuned to be lucrative adsorbent for Cd (II) elimination from water and waste-water.


Assuntos
Cassia , Poluentes Químicos da Água , Cádmio/análise , Carbono , Adsorção , Poluentes Químicos da Água/análise , Cinética , Íons , Carvão Vegetal , Água , Concentração de Íons de Hidrogênio , Termodinâmica
2.
Environ Res ; 229: 115973, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088318

RESUMO

The present study explores natural pigments as sustainable alternatives to synthetic textile dyes. Due to their therapeutic applications and easy production, fungal pigments have gained attention. However, data on pigment production using solid-state fermentation and optimization is limited. Milk whey was used to grow Talaromyces sp., followed by an evaluation of pigment production in solid and liquid media. Pineapple peels were used as a cost-effective substrate for pigment production, and a one-factor-at-a-time approach was used to enhance pigment production. Pineapple peel-based media produced 0.523 ± 0.231 mg/g of pigment after eight days of incubation. The crude pigment had promising antibacterial and significant antioxidant properties. The extraction fungal pigment's possible use as an eco-friendly textile dye was assessed through fabric dyeing experiments with different mordants. This work contributes to the valorization of agricultural waste and provides insight into using fungal pigments as sustainable alternatives to synthetic textile dyes.


Assuntos
Ananas , Talaromyces , Pigmentos Biológicos/química , Antioxidantes , Corantes/química , Antibacterianos , Têxteis
3.
Environ Res ; 231(Pt 1): 115962, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119839

RESUMO

The search for natural therapeutic agents has intensified due to their potential to treat various diseases. Bioactive secondary metabolites from endophytes offer high therapeutic profiles and can be mass-produced after optimizing medium parameters and purification. This investigation aimed to maximize crude pigmented secondary metabolite (CPSM) production from Curvularia australiensis FC2AP by optimizing fermentation conditions statistically. The endophytic fungus produced a maximum yield of 8.81 UL/g from biomass using Sabouraud's Dextrose Broth. After screening essential factors, the Plackett-Burman design was used for factorial optimization, and the Box Behnken design was employed to investigate three significant factors. The final CPSM yield was 12.3 UL/g, approximately 4-fold higher than the preliminary growth medium. Chromatographic purification using a gradient solvent system resulted in six fractions, with the fourth fraction demonstrating the highest bioactivity profile. Structural characterization confirmed this fraction to be a dimer of epicatechin, which has anti-cancer properties, as confirmed through in vivo studies on Sprague Dawley rats. This is the first report of a epicatechin dimer produced from C. australiensis.


Assuntos
Catequina , Ratos , Animais , Ratos Sprague-Dawley , Curvularia , Fermentação , Fungos
4.
Environ Res ; 221: 115283, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639016

RESUMO

The present study describes the isolation and characterization of Bacillus tropicus LS27 capable of keratinolytic protease production from Russell Market, Shivajinagar, Bangalore, Karnataka, with its diverse application. The ability of this strain to hydrolyze chicken feathers and skim milk was used to assess its keratinolytic and proteolytic properties. The strain identification was done using biochemical and molecular characterization using the 16S rRNA sequencing method. Further a sequential and systematic optimization of the factors affecting the keratinase production was done by initially sorting out the most influential factors (NaCl concentration, pH, inoculum level and incubation period in this study) through one factor at a time approach followed by central composite design based response surface methodology to enhance the keratinase production. Under optimized levels of NaCl (0.55 g/L), pH (7.35), inoculum level (5%) and incubation period (84 h), the keratinase production was enhanced from 41.62 U/mL to 401.67 ± 9.23 U/mL (9.65 fold increase) that corresponds to a feather degradation of 32.67 ± 1.36% was achieved. With regard to the cost effectiveness of application studies, the crude enzyme extracted from the optimized medium was tested for its potential dehairing, destaining and metal recovery properties. Complete dehairing was achieved within 48 h of treatment with crude enzyme without any visible damage to the collagen layer of goat skin. In destaining studies, combination of crude enzyme and detergent solution [1 mL detergent solution (5 mg/mL) and 1 mL crude enzyme] was found to be most effective in removing blood stains from cotton cloth. Silver recovery from used X-ray films was achieved within 6 min of treatment with crude enzyme maintained at 40 °C.


Assuntos
Detergentes , Cloreto de Sódio , Animais , Detergentes/análise , RNA Ribossômico 16S/genética , Cloreto de Sódio/análise , Índia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Metais/análise , Plumas , Concentração de Íons de Hidrogênio , Temperatura , Galinhas/genética
5.
Environ Res ; 216(Pt 2): 114620, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273595

RESUMO

Immensely expanding world population and narrowing arable land for agriculture is a mighty concern faced by the planet at present. One of the major reasons for decline in arable lands is the increased soil salinity, making it unfavourable for crop cultivation. Utilisation of these saline land for agriculture is possible with suitable invention for improving the soil quality. Biofertizers manufactured out of Plant Growth Promoting Rhizobacteria is one such innovation. In the present study, Bacillus licheniformis NJ04 strain was isolated and studied for its halotolerance and other effective plant growth promoting traits. The NJ04 strain was able to tolerate salt up to 10% and highlighted remarkable antifungal activity against common fungal phytopathogens. The preliminary seed germination test in Solanum lycopersicum seeds revealed a significant increase in root length (16.29 ± 0.91 cm) and shoot length (9.66 ± 0.11 cm) of treated plants as compared with the control plants and thereby shows its possible use as a green bioinoculant in agriculture and an ideal candidate to compete with salt stress.


Assuntos
Bacillus licheniformis , Solanum lycopersicum , Solo , Microbiologia do Solo , Desenvolvimento Vegetal , Raízes de Plantas
6.
Chemosphere ; 311(Pt 1): 136899, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36265702

RESUMO

The purpose of this study was to find the most cadmium (Cd2+) tolerant and remediated bacteria isolate from KNO3 processing unit contaminated soil. One isolate out of 19 isolates possessed excellent Cd2+ tolerance than others, which was recognized as Enterobacter hormaechei SFC3 through molecular characterization (16S rRNA sequencing). The identified E. hormaechei SFC3 contained 55% and 45% of GC and AT content, respectively. The wild and acridine orange mutated E. hormaechei SFC3 exhibited excellent resistance to Cd2+ up to the concentration of 1500 µg mL-1. Furthermore, the wild E. hormaechei SFC3 and mutated E. hormaechei SFC3 showed 82.47% and 90.21% of Cd2+ remediation on 6th days of treatment respectively. Similarly, the Cd2+ tolerant wild and mutated E. hormaechei SFC3 showed considerable resistance to all the tested antibiotics. The findings indicate that E. hormaechei SFC3 isolated from KNO3 processing unit contaminated soil is a promising candidate for microbial remediation of Cd2+ contamination.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/toxicidade , Solo , RNA Ribossômico 16S , Enterobacter/genética , Poluentes do Solo/toxicidade
7.
Chemosphere ; 311(Pt 1): 136889, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257390

RESUMO

The current study investigated the plant growth promoting (PGP) characteristics of multi-metal-tolerant Bacillus cereus and their positive effect on the physiology, biomolecule substance, and phytoremediation ability of Chrysopogon zizanioides in metal-contaminated soil. The test soil sample was detrimentally contaminated by metals including Cd (31 mg kg-1), Zn (7696 mg kg-1), Pb (326 mg kg-1), Mn (2519 mg kg-1) and Cr (302 mg kg-1) that exceeded Indian standards. The multi-metal-tolerant B. cereus seemed to have superb PGP activities including fabrication of hydrogen cyanide, siderophore, Indole Acetic Acid, N2 fixation, as well as P solubilisation. Such multi-metal-tolerant B. cereus attributes can dramatically reduce or decontaminate metals in contaminated soils, and their PGP attributes significantly improve plant growth in contaminated soils. Hence, without (study I) and with (study II) the blending of B. cereus, this strain vastly enhances the growth and phytoremediation potency of C. zizanioides on metal contaminated soil. The results revealed that the physiological data, biomolecule components, and phytoremediation efficiency of C. zizanioides (Cr: 7.74, Cd: 12.15, Zn: 16.72, Pb: 11.47, and Mn: 14.52 mg g-1) seem to have been greatly effective in study II due to the metal solubilizing and PGP characteristics of B. cereus. This is a one-of-a-kind report on the effect of B. cereus's multi-metal tolerance and PGP characteristics on the development and phytoextraction effectiveness of C. zizanioides in metal-polluted soil.


Assuntos
Bacillus , Vetiveria , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Cádmio , Chumbo , Metais Pesados/toxicidade , Metais Pesados/análise
8.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365629

RESUMO

Lignin-based chemicals and biomaterials will be feasible alternatives to their fossil-fuel-based counterparts once their breakdown into constituents is economically viable. The existing commercial market for lignin remains limited due to its complex heterogenous structure and lack of extraction/depolymerization techniques. Hence, in the present study, a novel low-cost ammonium-based protic ionic liquid (PIL), 2-hydroxyethyl ammonium lactate [N11H(2OH)][LAC], is used for the selective fractionation and improved extraction of lignin from Scots pine (Pinus sylvestris) softwood biomass (PWB). The optimization of three process parameters, viz., the incubation time, temperature, and biomass:PIL (BM:PIL) ratio, was performed to determine the best pretreatment conditions for lignin extraction. Under the optimal pretreatment conditions (180 °C, 3 h, and 1:3 BM:PIL ratio), [N11H(2OH)][LAC] yielded 61% delignification with a lignin recovery of 56%; the cellulose content of the recovered pulp was approximately 45%. Further, the biochemical composition of the recovered lignin and pulp was determined and the recovered lignin was characterized using 1H-13C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, quantitative 31P NMR, gel permeation chromatography (GPC), attenuated total reflectance (ATF)-Fourier transform infrared spectroscopy (ATR-FTIR), and thermal gravimetric analysis (TGA) analysis. Our results reveal that [N11H(2OH)][LAC] is significantly involved in the cleavage of predominant ß-O-4' linkages for the generation of aromatic monomers followed by the in situ depolymerization of PWB lignin. The simultaneous extraction and depolymerization of PWB lignin favors the utilization of recalcitrant pine biomass as feedstock for biorefinery schemes.

9.
Food Chem Toxicol ; 169: 113411, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087621

RESUMO

The current finding reports on the development of highly ordered closely packed TiO2 nanotube arrays on Ti substrate via two-step anodization process. The nanotubes developed by second anodization step (TNT2) were encapsulated with Pt nanoflakes using electro-deposition followed by hydrothermal treatment process. The FE-SEM, FTIR, XRD and contact angle measurement, respectively were done to find out the morphological, functional group, phase structural and wettability of the samples. The tube diameter and length were found to be 110-120 and 50-100 nm and 437 and 682, respectively for first (TNT1) and second anodization. The structural order of the TNT has enhanced in the second anodization process. Chronoamperometric results showed that the Pt-TNT2 exhibited enhanced and steady state electro-catalytic activity than Pt-TNT1. Pt-TNT2 nanoflake composite showed near SHP behaviour than the TNT without Pt. The food processing machinery developed using near SHP Pt-TNT2 could be cleaned easily due to its high non-wettability. Hence, Pt-TNT2 can be used for making food processing equipment.


Assuntos
Análise de Alimentos , Indústria de Processamento de Alimentos , Nanotubos , Molhabilidade , Nanotubos/química , Titânio/química , Análise de Alimentos/instrumentação
10.
Food Chem Toxicol ; 168: 113366, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35977621

RESUMO

In this report, the green fabrication of copper oxide nanoparticles (CuNPs) using Turnera subulata leaf extract and assessed for the antibacterial and photocatalytic activities. The synthesis of CuNPs was performed using the leaves of T. subulata (TS-CuNPs) and characterized using UV-visible spectrophotometry, Fourier transforms infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX). Produced TS-CuNPs showing transmittance peaks approximately 707-878 cm-1, with a spherical shape particle with an average size of 58.5 nm. As synthesized TS-CuNPs were used as a coating material in cotton fabrics and tested the efficacy against Gram-negative and Gram-positive bacterial pathogens. TS-CuNPs inhibited the growth of Escherichia coli and Staphylococcus aureus on cotton fabrics. Antibiofilm activity of TS-CuNPs showed a 4-fold reduction in the biofilm formation of E. coli and S. aureus. Structural morphology of TS-CuNPs coated on cotton fabric analysis using SEM-EDX confirmed the attachment of TS-CuNPs and reduction in the bacterial attachment to the cotton fabrics. Thus, this study provides a potential strategy to improve the antibacterial property of cotton fabrics in textile production for medical, sportswear, and casual wear applications. Further, the photocatalytic activity against the tested dyes evident the potential in dye industry wastewater treatment. Hence, this work represents a simple, greener, and cost-effective route for in situ synthesis of CuNPs with the potential antibacterial and as a dye degradation agent for water remediation.


Assuntos
Nanopartículas Metálicas , Plantas Medicinais , Turnera , Antibacterianos/química , Corantes/química , Cobre/química , Cobre/farmacologia , Escherichia coli , Química Verde , Nanopartículas Metálicas/química , Óxidos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Água
11.
Food Chem Toxicol ; 168: 113335, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35931245

RESUMO

This research paper attempt to provide the photocatalytic performance of nitrogen ion (N+) entrenched anodized Ti with hydroxyapatite hybrid nano-sctructure meant for dilapidation of organic contaminant from the environment. The N+ was entrenched at 70 keV with varying doses (1 × 1016, 5 × 1016, 1 × 1017 and 2.5 × 1017 N+/cm2) into anodized Ti surface. Functional groups, phase structure, topographic and morphologic characterizations of the synthesized hybrid nano-sctructure were analyzed using Infra Red Spectroscopy, X-ray diffraction and Microscopic techniques, respectively. Wettability of the specimens was found out using contact angle measurements. The anodized Ti specimens without N+ have exhibited less surface energy than the specimens with N+. Porous shell gets smoothened after the entrenchment of N+. Compared to all the doses of nitrogen implantation, better performance was observed for 5 × 1016 N+/cm2 dose. Moreover, the samples with N+ showed better charge transfer resistance indicating enhanced photocatalytic performance of N+ entrenched titania than other samples.


Assuntos
Nanocompostos , Titânio , Hidroxiapatitas , Nanocompostos/química , Nitrogênio/química , Titânio/química
12.
Food Chem Toxicol ; 168: 113340, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934122

RESUMO

The present study focused on microwave assisted synthesis of zirconium nanoparticles (ZrO2NPs) using leaf extract of Phyllanthus niruri as ecofriendly approach and assessed its antimicrobial and bioremediation efficiency. Visual color transition from yellow to brown indicates the formation of ZrO2NPs which was further substantiated by UV-Visible absorption peak at 300 nm. Dynamic Light Scattering (DLS) analysis revealed that the average particle size of ZrO2NPs as 121.5 nm with negative zeta potential of -22.6 mv. Scanning electron microscopic analysis showed spherical shaped nanoparticles with an average size of 125.4 nm. Results of photocatalytic studies revealed that ZrO2NPs exhibited 74%, 62% and 57%, dye degradation for methyl red, methyl orange, and methyl blue respectively. Antimicrobial studies depicted that ZrO2NPs exhibited bactericidal activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Aspergillus niger at dose of 200 µg/mL. Overall results of the present study revealed biogenic synthesis of ZrO2 NPs with potent bioremediation and antimicrobial properties.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Phyllanthus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Extratos Vegetais/farmacologia , Zircônio/farmacologia
13.
Food Chem Toxicol ; 168: 113326, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934123

RESUMO

This study aims at the transformation of the waste lignocellulosic biomass, Simarouba glauca seed shell obtained from biofuel industries, into a value-added adsorbent for the removal of dyes from aqueous media. The basic dye direct red (DR) 12B was adsorbed using chemically (ZnCl2) and thermally activated Simarouba seed shell carbon (ZASRC and SRC, respectively). Dye removal in batch mode was studied by evaluating adsorbent dosage, contact time, pH, adsorption isotherm and kinetics. Enhanced adsorption of DR12B was attained within 80 min at pH 5 with the maximal adsorption capacity (Q0) of 17.48 and 64.94 mg g-1, for SRC and ZASRC, respectively. Further, the dye removal followed Freundlich isotherm model and pseudo second-order kinetics. The mean-free energy of adsorption demonstrated that dye adsorption onto ZASRC occurs through ion-exchange. Thus, ZASRC can be safely and easily applied for the removal of direct red 12B from aqueous solutions.


Assuntos
Simarouba , Poluentes Químicos da Água , Adsorção , Compostos Azo , Biocombustíveis , Carbono , Carvão Vegetal , Corantes , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
14.
Chemosphere ; 290: 133297, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34921853

RESUMO

Protic ionic liquids (PILs) have been considered effective solvents for the selective separation and recovery of cellulose from lignocellulosic biomass. However, PILs can also be utilized for the extraction and conversion of lignin into fuels and value-added products. The objective of this work was to study the extraction of lignin from ash tree (Fraxinus exselsior) hardwood biomass using three different PILs-pyridinium acetate, pyridinium formate [Py][For], and pyrrolidinium acetate. Fiber analysis was used to determine the biochemical composition of the left-over biomass after lignin separation. FTIR and NMR were applied to determine the structure of dissolved lignin. Additionally, the regeneration potential and recyclability of PILs were assessed. Our results demonstrate that treatment with [Py][For] at 75 °C yields the highest percentage of lignin dissolution from biomass. This indicates that PILs could be used for Kraft lignin dissolution as well as separation of lignin from raw, milled biomass.


Assuntos
Fraxinus , Líquidos Iônicos , Biomassa , Lignina , Solventes
15.
J Environ Manage ; 300: 113831, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34649321

RESUMO

Wastewater and activated sludge present a major challenge worldwide. Wastewater generated from large and small-scale industries, laundries, human residential areas and other sources is emerging as a main problem in sanitation and maintenance of smart/green cities. During the last decade, different technologies and processes have been developed to recycle and purify the wastewater. Currently, identification and fundamental consideration of development of more advanced microbial-based technologies that enable wastewater treatment and simultaneous resource recovery to produce bioenergy, biofuels and other value-added compounds (organic acids, fatty acids, bioplastics, bio-pesticides, bio-surfactants and bio-flocculants etc.) became an emerging topic. In the last several decades, significant development of bioprocesses and techniques for the extraction and recovery of mentioned valuable molecules and compounds from wastewater, waste biomass or sludge has been made. This review presents different microbial-based process routes related to resource recovery and wastewater application for the production of value-added products and bioenergy. Current process limitations and insights for future research to promote more efficient and sustainable routes for this under-utilized and continually growing waste stream are also discussed.


Assuntos
Águas Residuárias , Purificação da Água , Biocombustíveis , Biomassa , Humanos , Esgotos
16.
Environ Res ; 202: 111647, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34237334

RESUMO

Semiconductor photocatalysts are efficient degraders of organic and inorganic waste water pollutants. Herein, we synthesized nickel-titanium dioxide (Ni-TiO2) nanoflakes using Mukia maderaspatana leafs with the aim of analyzing their photocatalytic degradation potential. Morphological analyses revealed that the nanoflakes were highly agglomerated with an average size of 100 nm. Further, elemental analysis confirmed the presence of Ti, O, and Ni, whereas Fourier transform infrared spectroscopy and X-ray diffraction established the presence of TiO2 and NiO. We found that photocatalytic degradation of congo red under UV illumination increased with increasing incubation period, demonstrating that Ni-TiO2 nanoflakes can be used as optimal photocatalysts for the degradation of dyes in waste water.


Assuntos
Vermelho Congo , Níquel , Catálise , Corantes , Extratos Vegetais , Titânio , Difração de Raios X
17.
Environ Res ; 200: 111493, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129868

RESUMO

The present research work reports the biosynthesis of hydroxyapatite (HAp) from eggshells and green synthesis of HAp from eggshells with incorporation of Piper betel leaf extract (PBL-HAp) using microwave conversion method. Although there are several works on synthesis of HAp from eggshells and other calcium and phosphorus rich substrates, the incorporation of herbal extract with HAp to promote antimicrobial and antibiofilm activity is less explored and reported. This research work highlights a simple and cost-effective method for development of antimicrobial biomaterials by combining the concepts of waste management, biomaterial science, and herbal medicine. In the present study, characterization of synthesized HAp was applied by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, and morphological analysis using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The characterization results indicated that the prepared HAp and PBL-HAp were pure b-type carbonated HAp. The PBL-HAp was checked for its antibacterial activity using the well diffusion method and biofilm inhibitory activity by crystal violet assay against some common pathogens. The antibacterial activities against Staphylococcus aureus and biofilm inhibitory activities against Escherichia coli, Vibrio harveyi, Pseudomonas aeruginosa, and Staphylococcus aureus of Piper betel leaf extract coated HAp (PBL-HAp) were showed to be significant and offered a promising role for the development of potent dental biomaterials.


Assuntos
Durapatita , Piper , Animais , Antibacterianos/farmacologia , Biofilmes , Casca de Ovo , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Vibrio , Difração de Raios X
18.
Chemosphere ; 277: 130311, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33774249

RESUMO

In this study, we aimed to assess the possible reusability of native and surface-modified waste biomass of a novel ascomycetes fungi Trichoderma asperellum BPL MBT1 for the adsorption of triphenylmethane dyes. Spent biomass obtained from fermentation medium has been applied in the uptake of model cationic dyes viz., crystal violet and malachite green. Optimization of experimental parameters by batch mode studies revealed that dye adsorption is influenced by medium pH time, initial concentration of dyes, and adsorbent dosage. It was observed that pH 10 was optimum for cationic dye adsorption. Further, the adsorption process obeyed the bi-model (Langmuir-Freundlich model) isotherm and adhered to pseudo-second-order kinetics. The involvement of ion exchange as the dominant mechanism of dye adsorption was indicated by the mean free energy obtained from Dubinin-Radushkevich isotherm. Cellular morphology and the involved functional groups were studied by scanning electron microscopy and Fourier transform infrared spectroscopy that revealed the presence of carbon and oxygen containing groups on the surface. Maximum desorption efficiency was achieved using a 0.1 M solution of HCl and the stability of the biosorbent was confirmed through reusability analysis. Our results confirm the applicability of both native and surface-modified T. asperellum BPL MBT1 biomass as a potential biosorbent for the sustainable wastewater treatment and safe dye disposal.


Assuntos
Trichoderma , Poluentes Químicos da Água , Adsorção , Biomassa , Corantes , Fermentação , Concentração de Íons de Hidrogênio , Hypocreales , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 771: 144700, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736139

RESUMO

The present study has tested the biodiesel potential of two hyper lipid producing strains Chlorella sp. and Scenedesmus sp. in terms of biomass yield, quantity and quality of lipid and fatty acid composition. Biomass yield of Chlorella sp. and Scenedesmus sp. was 1.26 and 1.33 g/L, respectively on day 18 and 20. The lipid content and lipid productivity of Chlorella sp. and Scenedesmus sp. was estimated to be 21.3, 26.5% and 12.33, 14.74 mg/L/d, respectively. Notably, relative abundance of lipid types in both the strains revealed >60% neutral lipids followed by glycolipids and phospholipids in minimal level. Central composite design based optimization revealed 69 and 65.4% FAME yield from Chlorella sp. and Scenedesmus sp. at 3% sulphuric acid and 65 °C reaction temperature. Eventually, higher levels of saturated fatty acids (~45%) and monounsaturated fatty acids (~34%) and make Scenedesmus sp. a promising parent material for workable biodiesel production.


Assuntos
Chlorella , Microalgas , Scenedesmus , Biocombustíveis , Biomassa , Ésteres , Ácidos Graxos , Lipídeos
20.
J Colloid Interface Sci ; 584: 770-778, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189317

RESUMO

In the present study, mixed calcium magnesium oxide (CaMgO2) nanoflakes were synthesized using an ultrasound-assisted co-precipitation method. The physicochemical, structural and functional properties and elemental composition of the nanoflakes had been characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), High-resolution transmission electron microscopy (HR-TEM), Fourier Transform Infrared spectroscopy (FTIR), UV-VIS spectroscopy, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Moreover, the photocatalytic actions of the nanoflakes were evaluated by the removal rates of methylene blue (MB) and p-nitrophenol (4-NP) under UV irradiation at room temperature. SEM-EDS studies revealed that the nanoflakes consisted of mixed oxide such as magnesium oxide (MgO) and calcium oxide (CaO) particles. The size of the nanoflakes was found to be in the range of 10-30 nm and the average size was 25 nm as confirmed by HR-TEM analysis. XRD revealed that the standard crystal size was calculated to be 25 nm. The synthesized nanoflakes had a strong photocatalytic activity for methylene blue (MB) and p-nitrophenol (4-NP) degradation in the presence of H2O2 under UV light irradiation within 60 min and 30 min, respectively. Hence, the present study proposes that the CaMgO2 nanoflakes can be employed for the removal of dyes from wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...