Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 512(1): 100-105, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30871775

RESUMO

Protein-protein interaction, including protein homo-oligomerization, is commonly believed to occur through a specific interface made of a limited number of amino acid residues. Here our systematic in vivo photo-crosslinking analysis via genetically incorporated unnatural amino acids unexpectedly shows that the dimerization of HdeA, an acid stress chaperone, is mediated by the residues along its whole polypeptide. These include those "forbidden" residues that are far away from the dimerization interface as judged according to the reported 3-D structure. We demonstrate that such dimerization, though intriguing, is neither a result of protein over-expression nor of any structural disturbance caused by the residue replacement. Similar unexpected dimerization also occurs for two other oligomeric proteins, IbpB (a molecular chaperone existing as polydispersed oligomers in vitro) and DegP (a protease existing as hexamers in vitro). In contrast to these three proteins, dimerization of a few other oligomeric proteins (e.g., OmpF, LamB, SurA, FtsZ and FkpA) that we similarly examined in living cells seems to be mediated only by specific residues. Together, our unexpected observations suggest that, for some oligomeric proteins such as HdeA, IbpB and DegP, their subunit interactions in living cells can also be mediated by residues other than those located at the interfaces as revealed by in vitro structure determination. Our observations might be partially explained by the formation of "encounter complex" or by protein conformational dynamics. Our findings provide new insights on understanding protein-protein interactions and encounter complex formation in living cells.


Assuntos
Proteínas de Escherichia coli/química , Domínios e Motivos de Interação entre Proteínas , Benzofenonas/química , Benzofenonas/metabolismo , Reagentes de Ligações Cruzadas , Diazometano/análogos & derivados , Diazometano/química , Diazometano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
2.
FEBS J ; 285(18): 3525-3538, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30085413

RESUMO

To counteract the lethal acid stress, bacteria explore such strategies as cytoplasmic decarboxylase-catalyzed proton consumption and periplasmic chaperone-assisted protein refolding. Here, we report a periplasmic protease-mediated acid resistance mechanism in Escherichia coli. Deletion of the protease gene degP dramatically decreases the viability of late log or early stationary phase cells against the extreme acid stress (pH 2.3), which can only be minimally rescued by complementary expression of the protease-deficient DegP(S210A) mutant protein. Similarly, DegQ, a homolog of DegP, also contributes to the bacterial acid resistance, but SurA as an important periplasmic chaperone hardly exhibits protection effect. In vitro studies reveal that DegP completely loses its protease activity under acidic condition but is able to partially reactivate upon neutralization. Importantly, we demonstrate the interaction of DegP with typical cellular substrate proteins in cells during acid stress and/or recovery stages by using unnatural amino acid-mediated in vivo photo-crosslinking, as well as the degradation of periplasmic proteins by DegP during recovery after acidic denaturation. These data illustrate the role of DegP in bacterial acid resistance conceivably via degrading those acid-induced misfolded proteins. Our findings, together with earlier reports, suggest a comprehensive acid resistance strategy adopted by bacteria such that in the ATP-deficient extra-cytoplasm, the inevitable misfolded proteins induced by acid stress are refolded by a chaperone (e.g., HdeA/HdeB) and/or cleaved by a protease (e.g., DegP/DegQ) while in the cytoplasm excessive protons are directly consumed or exported.


Assuntos
Ácidos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/enzimologia , Proteínas de Choque Térmico/metabolismo , Proteínas Periplásmicas/metabolismo , Proteólise , Serina Endopeptidases/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Choque Térmico/química , Chaperonas Moleculares , Proteínas Periplásmicas/química , Dobramento de Proteína , Serina Endopeptidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...