Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170608, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307291

RESUMO

Biochar contains biotoxic aromatic compounds, and their influence on nitrogen-fixing cyanobacteria, the critical nitrogen fixer in paddy soil, has never been tested. Here, the physiological, metabolomic, and transcriptomic analyses of Nostoc sp. PCC7120 in response to biochar leachate were performed. The results suggested that biochar leachate inhibited the efficiency of photosynthesis, nitrogen fixation, and nitrate assimilation activities of nitrogen-fixing cyanobacteria. Biochar leachate containing aromatic compounds and odd- and long-chain saturated fatty acids impaired the membrane structure and antenna pigments, damaged the D1 protein of the oxygen evolution complex, and eventually decreased the electron transfer chain activity of photosystem II. Moreover, the nitrogen fixation and nitrate assimilation abilities of nitrogen-fixing cyanobacteria were inhibited by a decrease in photosynthetic productivity. A decrease in iron absorption was another factor limiting nitrogen fixation efficiency. Our study highlights that biochar with relatively high contents of dissolved organic matter poses a risk to primary nitrogen assimilation reduction and ecosystem nitrogen loss. Further evidence of the potential negative effects of biochar leachates on the fixation and assimilation capacity of nitrogen by soil microbes is needed to evaluate the impact of biochar on soil multifunctionality prior to large-scale application.


Assuntos
Cianobactérias , Nitratos , Ecossistema , Nitrogênio/análise , Fixação de Nitrogênio , Carvão Vegetal/química , Cianobactérias/metabolismo , Solo/química
2.
J Hazard Mater ; 460: 132473, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683348

RESUMO

The extensive utilization of neonicotinoid insecticides (NNIs) in agricultural practices ultimately poses a significant threat to both the environment and human health. This work focuses on the efficient degradation and detoxification of the representative NNI, thiamethoxam (THX), and explores the underlying mechanism using a Co-Fe-Mn mixed spinel doped carbon composite catalyst activated persulfate. The findings demonstrate that the composite effectively degrades THX, achieving a degradation rate of 95% in 30 mins, while requiring only a fraction (one-sixteenth) of the oxidant dosage compared to pure carbon. The study aimed to examine the negative impact of reactive halogens on reactive oxygen species within a saline environment. The degradation byproducts were linked to the presence of two common electron-withdrawing groups, namely halogens and nitro in the THX molecule. It was hypothesized that the degradation process was primarily influenced by C-N bond breaking and hydroxylation occurring between the diazine oxide and 2-chlorothiazole rings. Consequently, dehalogenation and carbonylation processes facilitated the elimination of halogenated components and pharmacophores from the THX, leading to detoxification. In addition to the identified free radical pathway including SO4•-, •OH and O2•- contributed to THX degradation, the participation of non-radical pathways (1O2 and electron transfer) were also confirmed. The efficacy of detoxification was further validated through toxicity assessment, employing quantitative conformation relationship prediction and microbial culture utilizing Bacillus subtilis.


Assuntos
Inseticidas , Humanos , Tiametoxam , Carbono , Halogênios
3.
J Environ Manage ; 344: 118338, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379629

RESUMO

Cadmium (Cd) contamination poses a considerable threat to human health through grain enrichment and limits biological nitrogen fixation (BNF) in paddy fields. Biochar has shown great potential for agricultural soil remediation because it inactivates Cd, but uncertainties remain as to how biochar amendments affect BNF and grain N use efficiency in paddies. To elucidate these issues, we investigated the effects of biochar amendment on the structure and function of diazotrophic bacterial communities in different rice growth stages in Cd-contaminated paddy fields, and evaluated the contribution of BNF to grain N use efficiency under biochar amendment. The results showed that biochar amendment significantly increased the abundance of diazotrophic bacteria in the tillering and jointing stages. Furthermore, the community structure of soil diazotrophic bacteria markedly changed with biochar amendment, with a significant reduction in the abundances of Euryarchaeota, Desulfobacterales (Proteobacteria), and Sphingomonadales (Bacteroidetes) in the tillering stage. Changes in the soil carbon/nitrogen (C/N) ratio was the main factor driving diazotrophic microbial community characteristics caused by the release of available C from biochar at the tillering stage, rather than the Cd. Moreover, biochar amendment increased the efficiency of BNF (especially for autotrophic N2 fixation) in the vegetative phase of rice growth. Notably, biochar amendment significantly decreased BNF efficiency during the filling stage and reduced grain N use efficiency. The limited available nutrients in biochar and the toxicity of polycyclic aromatics and phenols in biochar-derived dissolved organic matter were responsible for the varied impacts of biochar on BNF in different rice growth stages. For the first time, we report that biochar amendment in paddy soils reduces Cd toxicity but also inhibits BNF and thereby decreases N use efficiency. Therefore, before applying biochar to inactivate Cd in paddy fields, there should be a trade-off between agricultural production and ecological safety to achieve sustainable agriculture.


Assuntos
Oryza , Poluentes do Solo , Humanos , Cádmio , Fixação de Nitrogênio , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química , Bactérias , Oryza/química , Grão Comestível/química
4.
Chemosphere ; 327: 138517, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36972868

RESUMO

In-suit immobilization is one of the major strategies to remediate heavy metals contaminated soil with the effectiveness largely depends on the characteristics of the added chemical reagents/materials. In this study, chitosan stabilized FeS composite (CS-FeS) was prepared to evaluate the performance of remediating the high and toxic hexavalent chromium contaminated soil from the effectiveness and microbial response aspects. The characterization analysis confirmed the successful preparation of composite, and the introduction of chitosan successfully stabilized FeS to protect it from rapid oxidation as compared to bare FeS particles. With the addition dosage at 0.1%, about 85.6% and 81.3% of Cr(VI) was reduced in 3 d based on toxicity characteristic leaching procedure (TCLP) and CaCl2 extraction, and the reduction efficiency increased to 96.6% and 94.8% in 7 d, respectively. The Cr(VI) was non-detected in the TCLP leachates with increase the CS-FeS composites to 0.5%. The percentages of HOAc-extractable Cr decreased from 25.17% to 6.12% accompanied with the increase in the residual Cr from 4.26% to 13.77% and improvement of soil enzyme activity under CS-FeS composites addition. Cr(VI) contamination reduced the diversity of microbial community in soil. Three dominate prokaryotic microorganisms, namely Proteobacteria, Actinobacteria and Firmicutes, were observed in Cr-contaminated soil. The addition of CS-FeS composites increased the microbial diversity especially for that in relative lower abundance. The relative abundance of Proteobacteria and Firmicute related to Cr-tolerance and reduction increased in CS-FeS composites added soils. Taking together, these results demonstrated the potential and promising of using the CS-FeS composites for Cr(VI) polluted soil remediation.


Assuntos
Quitosana , Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes do Solo/análise , Cromo/química , Solo/química
5.
Chemosphere ; 311(Pt 1): 136975, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283437

RESUMO

Imidacloprid (IMI), a typic neonicotinoid insecticide, is widely used and persist in soils with long half-time causing serious threat to ecosystem and human health. It is urgent to develop suitable and effective methods to accelerate it degradation and alleviate its negative impacts in soil. In this study, the introduction of functional microbe white-rot fungus Phanerochaete chrysosporium to remediate IMI contaminated wetland soil was carried out. The remediation performance and the response of the soil microbial community were examined. The results showed that P. chrysosporium could improve the degradation of IMI in soil no matter the soil was sterilized or not. The bioaugmentation was especially observed in non-sterilized soil under the inoculation patterns of FE and SP with the maximum IMI degradation rate of 91% and 93% in 7 days, respectively. The invertase activity in soil was also enhanced with P. chrysosporium inoculation. Microbial community analysis revealed that P. chrysosporium inoculation could increase the diversity and richness of bacterial community, and stimulate some IMI degraders genera including Ochrobactrum, Leifsonia, Achromobacter, and Bacillus. Moreover, the xenobiotic degradation and metabolism pathway was generally enhanced with P. chrysosporium inoculation based on PICRUSt analysis. These obtained results demonstrated that the introduction of white-rot fungus is of great potentially enabling the remediation of neonicotinoids contaminated soil.


Assuntos
Inseticidas , Microbiota , Phanerochaete , Poluentes do Solo , Humanos , Phanerochaete/metabolismo , Inseticidas/metabolismo , Biodegradação Ambiental , Áreas Alagadas , Neonicotinoides/metabolismo , Solo , Poluentes do Solo/análise , Microbiologia do Solo
6.
Artigo em Inglês | MEDLINE | ID: mdl-36429787

RESUMO

Long-term of excessive fertilization using nitrogen (N) chemical fertilizer caused the acidification of paddy soils. Presently, the impacts of soil acidification on physiological characteristics of diazotrophic cyanobacteria remain unknown. In order to elucidate this issue, the effects of paddy floodwater acidification on activities of respiration, photosynthetic oxygen evolution, and N2 fixation of a paddy diazotrophic cyanobacterium Aliinostoc sp. YYLX235 were investigated in this study. In addition, the origination and quenching of intracellular reactive oxygen species (ROS) were analyzed. The acidification of paddy floodwater decreased intracellular pH and interfered in energy flux from light-harvesting chlorophyll antenna to the reaction center of photosystem II (PS II). Activities of respiration, photosynthetic oxygen evolution, and N2 fixation were decreased by the acidification of paddy floodwater. Accompanied with an increase in ROS, the level of antioxidative system increased. Superoxide dismutase (SOD) and catalase (CAT) were the main enzymatic ROS scavengers in the cells of YYLX235; reduced glutathione (GSH) was the main non-enzymatic antioxidant. Antioxidants and oxidants in the cells of YYLX235 lost balance when the pH of paddy floodwater fell to 5.0 and 4.0, and lipid oxidative damage happened. The results presented in this study suggest that the acidification of paddy soil severely interfered in the photosynthesis of diazotrophic cyanobacteria and induced the production of ROS, which in turn resulted in oxidative damage on diazotrophic cyanobacteria and a decrease in cell vitality.


Assuntos
Antioxidantes , Cianobactérias , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Fixação de Nitrogênio , Cianobactérias/metabolismo , Fotossíntese , Estresse Oxidativo , Solo , Oxigênio , Concentração de Íons de Hidrogênio
7.
Bioresour Technol ; 364: 128094, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36220530

RESUMO

Direct production of 5-hydroxymethylfurfural (HMF) through biomass always needs the addition of exogenous catalysts and causes extra costs. Herein, acid mine drainage (AMD), one of the traditional wastewaters, was introduced as a natural catalyst to produce HMF directly from lignocellulosic biomass. Key factors in the biomass conversion were optimized and investigated by the response surface methodology (RSM), and the HMF yield reached 13.51 wt% under optimal conditions. The metal elements and the acidic environment in AMD activated the Fenton reaction to effectively destroy the lignocellulose structure and synergistically promote the formation of HMF. Furthermore, the biomass substrate in the biomass conversion was indirectly modified by the AMD during this process. The biomass conversion residue could be prepared by pyrolysis to obtain a functional metal-loaded carbon material with good adsorption of thiamethoxam (THX), which provides a sustainable solution for the disposal of biomass conversion residue.

8.
Ecotoxicology ; 31(6): 873-883, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35834074

RESUMO

Nanoscale zero-valent iron particles (NZVI) are widely used in a variety of industries owing to their advantageous mechanical, physical, and chemical properties. These particles can be released into environmental media, including water, soil, and air, through several pathways. NZVI in the ecosystem can be taken up, excreted and distributed within organisms, which is harmful to plants, animals and humans. Plants play a significant role as producers in the ecological circle and can both positively and negatively affect the ecological behavior of NZVI. Therefore, understanding the relationship between plants and NZVI is likely to be of great value for the assessment of NZVI-associated risks and future research directions. In this review, we summarize the current knowledge on the uptake, distribution, and accumulation of NZVI in plants; the phytotoxicity triggered by NZVI exposure at the physiological, biochemical, and molecular levels; and the defense mechanism used by plants to defend against NZVI-induced insults. We further discuss the toxic effects of NZVI on soil animals and microorganisms as well as the risk posed by the presence of NZVI in the food chain.


Assuntos
Recuperação e Remediação Ambiental , Nanopartículas Metálicas , Nanopartículas , Poluentes do Solo , Animais , Ecossistema , Humanos , Ferro/química , Ferro/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas/química , Solo/química , Poluentes do Solo/análise
9.
Sci Total Environ ; 822: 153426, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35090917

RESUMO

With the rapid depletion of fossil energy and increasingly severe environmental pollution, the development of biomass resources for biorefineries has become a new research focus. However, heavy metals may be released during the thermochemical treatment when the biomass materials used in biomass conversion are contaminated by heavy metals. This can cause secondary environmental pollution or transference to the target products, reducing product quality. Therefore, having a systematic understanding of the fate of heavy metals in biomass conversion is necessary for alleviating potential risks. This study presents the current status of contaminated biomass and conversion products involving thermochemical processes, the migration, transformation, and impact of heavy metals in biomass conversion was investigated, and the utilization of heavy metals in contaminated biomass was briefly outlined. This review aims to link biomass conversion to the fate of heavy metals, avoid existing risks as much as possible to produce cleaner products efficiently, and promote the sustainable development of heavy metal contaminated biomass resources.


Assuntos
Metais Pesados , Biomassa , Poluição Ambiental , Metais Pesados/análise
10.
Environ Technol ; 43(1): 21-33, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32431242

RESUMO

Extracellular polymeric substance (EPS) is secreted by many organisms and makes up a significant constituent of natural organic matter in the environment. However, nothing is known about EPS's role in the reduction of pollutants by nano-sized zero-valent iron (NZVI). This research showed that the degradation kinetics of nitrobenzene (NB) by NZVI with EPS (0.0272 ± 0.006 min-1) were 2.27 times lower than that without EPS (0.0618 ± 0.006 min-1) in the first cycle, mainly due to competition for reactive sites on the NZVI surface and the complexation of EPS with Fe(II) and Fe(III). In the second and third cycle, the degradation kinetics of NB by NZVI alone decreased obviously, while those in the presence of EPS were preserved or accelerated. Comparative studies with a quinine model compound indicated that EPS did not function as the electron shuttle to transmit electrons effectively. X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction results suggested that EPS could prevent the oxidation of NZVI and even expose more effective sites on the NZVI surface, thus leading to the preservation or enhancement of NZVI reactivity in the second and third NB degradation cycles. Moreover, we found that EPS also provided colloidal stability to NZVI particles, either by steric mechanisms or electrostatic repulsion. These results indicate that EPS can play an important role in the prolongation of NZVI reactivity during standing application.


Assuntos
Ferro , Poluentes Químicos da Água , Matriz Extracelular de Substâncias Poliméricas/química , Cinética , Nitrobenzenos , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA