Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718990

RESUMO

Here, lignin and nano-clay were used to prepare novel composite adsorbents by one-step carbonization without adding activators for radioactive iodine capture. Specially, 1D nano-clay such as halloysite (Hal), palygorskite (Pal) and sepiolite (Sep) were selected as skeleton components, respectively, enzymatic hydrolysis lignin (EHL) as carbon source, lignin based porous carbon/nano-clay composites (ELC-X) were prepared through ultrasonic impregnation, freeze drying, and carbonization. Characterization results indicated lignin based porous carbon (ELC) well coated on the surface of nano-clay, and made its surface areas increase to 252 m2/g. These composites appeared the micro-mesoporous hierarchical structure, considerable N doping and good chemical stability. Results of adsorption experiments showed that the introduction of ELC could well promote iodine vapor uptake of nano-clay, and up to 435.0 mg/g. Meanwhile, the synergistic effect between lignin based carbon and nano-clay was very significant for the adsorption of iodine/n-hexane and iodine ions, their capacity were far exceed those of a single material, respectively. The relevant adsorption kinetic and thermodynamics, and mechanism of ELC-X composites were clarified. This work provided a class of low-cost and environmentally friendly adsorbents for radioactive iodine capture, and opened up ideas for the comprehensive utilization of waste lignin and natural clay minerals.


Assuntos
Carbono , Argila , Iodo , Lignina , Lignina/química , Argila/química , Carbono/química , Adsorção , Porosidade , Iodo/química , Cinética , Nanocompostos/química , Termodinâmica
2.
Int J Biol Macromol ; 262(Pt 1): 130019, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331077

RESUMO

As an essential trace element for plant growth and development, manganese plays a crucial role in the uptake of the heavy metal cadmium by rice (Oryza sativa L.). In this study, we developed a novel slow-release manganese fertilizer named Mn@LNS-EL. Initially, lignin nanoparticles were derived from sodium lignosulfonate, and a one-step emulsification strategy was employed to prepare a water-in-oil-in-water (W/O/W) Pickering double emulsions. These double emulsions served as the template for interfacial polymerization of lignin nanoparticles and epichlorohydrin, resulting in the formation of microcapsule wall materials. Subsequently, manganese fertilizer (MnSO4) was successfully encapsulated within the microcapsules. Hydroponic experiments were conducted to investigate the effects of Mn@LNS-EL on rice growth and the cadmium and manganese contents in the roots and shoots of rice under cadmium stress conditions. The results revealed that the treatment with Mn@LNS-EL markedly alleviated the inhibitory effects of cadmium on rice growth, leading to notably lower cadmium levels in the rice roots and shoots compared to the specimens treated without manganese fertilizer. Specifically, there was a reduction of 37.9 % in the root cadmium content and a 17.1 % decrease in the shoot cadmium content. In conclusion, this study presents an innovative approach for the high-value utilization of lignin through effective encapsulation and slow-release mechanisms of trace-element fertilizers while offering a promising strategy for efficiently remediating cadmium pollution in rice.


Assuntos
Oryza , Poluentes do Solo , Oligoelementos , Manganês/farmacologia , Lignina/farmacologia , Fertilizantes/análise , Cádmio/farmacologia , Água/farmacologia , Poluentes do Solo/farmacologia , Raízes de Plantas/química , Solo
3.
Molecules ; 28(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764410

RESUMO

The direct selective conversion of ethanol to butadiene (ETB) is a competitive and environmentally friendly process compared to the traditional crude cracking route. The acid-base properties of catalysts are crucial for the direct ETB process. Herein, we report a rationally designed multifunctional lignin-derived carbon-modulated ZnZr/SiO2 (L-ZnZr/SiO2) catalyst with suitable acid-base properties for the direct ETB reaction. A variety of characterization techniques are employed to investigate the relationship between the acid-base properties and catalytic performance of the multifunctional lignin-modulated ZnZr/SiO2 catalysts. The results revealed that the rationally additional lignin-modulated carbon enhances both the acidity and basicity of the ZnZr/SiO2 catalysts, providing a suitable acid-base ratio that boosts the direct ETB reactivity. Meanwhile, the 1% L-ZnZr/SiO2 catalyst possessed ethanol conversion and butadiene selectivity as high as 98.4% and 55.5%, respectively, and exhibited excellent catalytic stability.

4.
ACS Omega ; 8(27): 24247-24255, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457452

RESUMO

Biomass is the ideal substitute for petrochemical resources because of its renewable and abundant sources. p-Toluenesulfonic acid (p-TsOH) can effectively separate lignin from biomass under mild conditions, so it is highly expected in biomass fractionation to improve the utilization efficiency. In this study, we investigated the effect of p-TsOH differentiated fractionation of poplar sawdust, eucalyptus sawdust, and rice straw below 100 °C. According to the experimental results, upon pretreatment by p-TsOH of the three kinds of raw biomass, most of the lignin and hemicellulose of poplar sawdust and eucalyptus sawdust were removed, whereas the cellulose was retained, but most of the hemicellulose and cellulose of rice straw were kept, whereas the lignin was removed at similar conditions. The structures and compositions of pretreatment residues, lignin, and hemicellulose extracted from raw biomass were characterized by XRD, FTIR, HSQC-NMR, XPS, and SEM. The differentiated fractionation mechanism of biomass was analyzed. A better recognition and understanding of the factors affecting biomatrix opening and fractionation will allow for the identification of new pretreatment strategies that improve biomass utilization and permit the rational enzymatic hydrolysis of cellulose.

5.
Bioresour Technol ; 383: 129178, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270148

RESUMO

This study reported that surfactants could facilitate the organosolv pretreatment of lignocellulosic biomass (LCB) to produce fermentable sugars and highly active lignin. Under the optimized conditions, the surfactant-assisted glycerol organosolv (saGO) pretreatment achieved 80.7% delignification with a retention of 93.4% cellulose and 83.0% hemicellulose. The saGO pretreated substrate exhibited an excellent enzymatic hydrolyzability, achieving 93% of glucose yield from the enzymatic hydrolysis at 48 h. Structural analysis showed that the saGO lignin contained rich ß-O-4 bondings with less repolymerization and lower phenolic hydroxyl groups, thus forming highly reactive lignin fragments. The analysis evidenced that the surfactant graft the lignin by structural modification, which was responsible for the excellent substrate hydrolyzability. The co-production of fermentable sugars and organosolv lignin almost recovered a gross energy (87.2%) from LCB. Overall, the saGO pretreatment holds a lot of promise for launching a novel pathway towards lignocellulosic fractionation and lignin valorization.


Assuntos
Glicerol , Lignina , Açúcares , Tensoativos , Biomassa , Hidrólise
6.
Polymers (Basel) ; 15(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376276

RESUMO

In the face of the current energy and environmental problems, the full use of biomass resources instead of fossil energy to produce a series of high-value chemicals has great application prospects. 5-hydroxymethylfurfural (HMF), which can be synthesized from lignocellulose as a raw material, is an important biological platform molecule. Its preparation and the catalytic oxidation of subsequent products have important research significance and practical value. In the actual production process, porous organic polymer (POP) catalysts are highly suitable for biomass catalytic conversion due to their high efficiency, low cost, good designability, and environmentally friendly features. Here, we briefly describe the application of various types of POPs (including COFs, PAFs, HCPs, and CMPs) in the preparation and catalytic conversion of HMF from lignocellulosic biomass and analyze the influence of the structural properties of catalysts on the catalytic performance. Finally, we summarize some challenges that POPs catalysts face in biomass catalytic conversion and prospect the important research directions in the future. This review provides valuable references for the efficient conversion of biomass resources into high-value chemicals in practical applications.

7.
Int J Biol Macromol ; 242(Pt 1): 124769, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169057

RESUMO

Coating slow-release fertilizers (CSRFs) have gained significant attention for their potential to improve nutrient utilization efficiency and prevent environmental pollution through mitigating soil and water contamination. This study developed a novel wood waste-derived composition as a bio-coating material for urea slow-release by integrating modified lignin (PCL) and activated biochar (ABC). PCL was prepared by grafting palmitoyl chloride (PC) with hydrophobic groups to the lignin via an esterification reaction. ABC with a high surface area and hierarchically porous structure created rich channels for ion transportation. These results increased the water-retention ability with a reduced absorbing/expelling rate and confer an excellent Cr(VI) adsorption capacity to the PCL and ABC hybrid coating material (PCL/ABC). The as-prepared PCL/ABC-based CSRF (PCL/ABC-CSRF) showed improving fertilizer slow-release properties for real application (nitrogen release persistence for 40 days at soil). The rice (Oryza sativa L.) hydroponics study suggested that such novel PCL/ABC was conducive to the rice growth in micro metallic contaminated hydroponics by eliminating the accumulation of chromium metal in rice roots. Overall, this study provides an attractive platform for developing biodegradable, heavy-metal adsorbable, and high-efficient CSRFs and a feasible and effective way for functionalized utilization of wood waste.


Assuntos
Fertilizantes , Oryza , Fertilizantes/análise , Lignina , Porosidade , Madeira/química , Carvão Vegetal/química , Água/química , Solo/química , Nitrogênio/química
8.
Int J Biol Macromol ; 238: 124127, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36958448

RESUMO

In this study, the lignin was pre-modified using small-molecule nitrogen-containing compounds, and then the nitrogen-doped lignin-based carbon nanotubes (L-NCNTs) were fabricated by pyrolysis using the modified lignin as raw materials. The obtained L-NCNTs were multi-walled carbon nanotubes with diameters between 10 and 80 nm. The modification of lignin had an important effect on the nitrogen morphology of L-NCNTs, and promoted the high selectivity of pyridine-N in the L-NCNTs. Defects and pyridinic-N structure were conducive to boosting photothermal properties of the L-NCNTs. The photothermal conversion efficiency of the L-NCNTs after 808 nm laser irradiation for 5 min reached 58.8 %. The L-NCNTs can be used as photothermal agents in drug delivery system to achieve mild photothermal therapy, and it is basically non-toxic to normal cells, indicating good biocompatibility. This work provides new ideas for development of lignin-based high value-added products from biomass.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Nitrogênio/química , Lignina , Terapia Fototérmica , Compostos de Nitrogênio
9.
Int J Biol Macromol ; 221: 25-37, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36063890

RESUMO

A series of lignin modified hyper-cross-linked nanoporous resins (LMHCRs) had been synthesized from lignin, 4-vinylbenzyl chloride, and divinylbenzene by free radical polymerization reaction and following Friedel-Crafts reaction. The results indicated that Brunauer-Emmett-Teller surface area (SBET) of LMHCRs decreased with different degrees compared with polymeric microspheres (HCRs) without adding lignin. With increasing the feeding amount of lignin, the SBET of LMHCRs first increased and then decreased, and LMHCR-2 had larger SBET (968.52 m2/g) and average pore size (DA: 2.51 nm). Meanwhile, their contact angle continuously decreased from 92.10 to 71.30, indicating the enhanced polarity. Interestingly, the adsorption capacity of p-nitrophenol (PNP) on all LMHCRs were obviously higher than rhodamine B, and LMHCR-2 had the largest capacity ratio (3.780) of PNP to rhodamine B or other organic dyes at 298 K. Specifically, the Qm of PNP on LMHCR-2 reached the largest value (492.1 mg/g) due to its suitable porosity and favorable surface polarity. LMHCR-2 also displayed excellent CO2 capture (86.5 mg/g) at 273 K and 1 bar and good reusability. This study provided an efficient route to modify hyper-cross-linked resin by using the residual lignin, and showed the enhanced adsorption performance.


Assuntos
Lignina , Nanoporos , Adsorção , Dióxido de Carbono , Água
10.
Microorganisms ; 10(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889176

RESUMO

The pretreatment of lignocellulosic biomass is important for efficient bioethanol conversion, but causes undesirable by-products that inhibit microbial growth, conversely affecting the bioconversion efficiency. In this study, the main inhibitors derived from dilute phosphoric acid plus steam-exploded poplar wood were identified as 0.22 g/L furfural, 3.63 g/L acetic acid, 0.08 g/L syringaldehyde, etc., indicating the green nature and low toxicity of the pretreatment process. The effects of the three typical inhibitors (furfural, acetic acid, and syringaldehyde) on Saccharomyces cerevisiae 1517RM growth were analyzed and shown to prolong the lag phase of microbial growth to different degrees. In all the inhibitor groups, the ergosterol secretion was boosted, indicating low cell membrane fluidity and robustness of the strain to an adverse environment. The cell electronegativity and morphology of S. cerevisiae 1517RM also changed under different growth conditions, which was helpful for monitoring the physicochemical properties of cells. Furfural, acetic acid, and syringaldehyde had a synergistic effect on each other, providing an important reference to improving the subsequent ethanol fermentation process.

11.
ACS Omega ; 7(1): 863-874, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036752

RESUMO

Biochar is widely used to remove hexavalent chromium [Cr(VI)] from wastewater through adsorption, which is recognized as a facile, cost-efficient, and high-selectivity approach. In this study, a versatile strategy that combines delignification with subsequent carbonization and KOH activation is proposed to prepare a novel woody biochar from waste poplar sawdust. By virtue of the unique multilayered and honeycomb porous structure induced by delignification and activation processes, the resultant activated carbonized delignified wood (ACDW) exhibits a high specific surface area of 970.52 m2 g-1 with increasing meso- and micropores and abundant oxygen-containing functional groups. As a benign adsorbent for the uptake of Cr(VI) in wastewater, ACDW delivers a remarkable adsorption capacity of 294.86 mg g-1 in maximum, which is significantly superior to that of unmodified counterparts and other reported biochars. Besides, the adsorption behaviors fit better with the Langmuir isotherm, the pseudo-second-order kinetic model, and the adsorption diffusion model in batch experiments. Based on the results, we put forward the conceivable adsorption mechanism that the synergistic contributions of the capillary force, electrostatic attraction, chemical complexation, and reduction action facilitate the Cr(VI) capture by ACDW.

12.
Chemosphere ; 288(Pt 1): 132499, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34626649

RESUMO

Lignin is a natural O-containing aromatic amorphous polymers from the residues of biorefinery and industrial papermaking, it can derive lots of aromatic phenol chemicals used as industrial raw materials by an efficient depolymerization, and then produce synthetic polymers. Here, we selected six aromatic units from the liquid products of lignin depolymerization, and tried to prepare diversified O-rich hyper-cross-linked polymers (HCPs) by one-pot Friedel-Crafts alkylation reaction for CO2 and iodine vapor capture. HCP1, HCP2, and HCP3 microspheres possessed similar porous structure with Brunauer-Emmett-Teller (BET) surface areas (SBET) of 14.1-20.6 m2/g and high O content (26.34-30.68 wt%), while HCP4, HCP5, and HCP6 were composed of many bulks with 3D networks structure, and showed larger SBET of 15.4-246.9 m2/g and relatively low O content (18.48-26.38 wt%). The results indicated that the chemical position and quantities of substituent groups (methoxy and alkyl) into lignin-derived units had evident impact on their morphology and textural parameters. These HCPs exhibited considerable CO2 uptake (64.1 mg/g) and selectivity (35.2) at 273 K, and high iodine vapor uptake (192.3 wt%). Moreover, the performance analysis implied that the SBET and pore volume of these HCPs had not played the dominated roles in the CO2 and I2 adsorption, while their pore size distribution, O-functional groups, and electron density will be more important for the capture of the both. This study will offer a facile synthesis of O-rich polymer microsphere adsorbents based on the green and sustainable lignin.


Assuntos
Iodo , Lignina , Adsorção , Dióxido de Carbono , Microesferas , Oxigênio , Fenóis , Polímeros , Porosidade
13.
Chem Commun (Camb) ; 56(65): 9372-9375, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32672286

RESUMO

Spinel-like ZnFe2O4 is tailor-made synthesized for catalyzing CO2 hydrogenation, achieving an ultra-high yield (1858.1 g kgcat-1 h-1) of full spectrum alkenes in a three-stage reactor system. This study provides rational design concepts from catalyst to equipment amelioration by combining promoter regulation and ex situ water removal, efficiently catalyzing CO2 into valuable chemical feedstocks with industrial potential.

14.
ACS Omega ; 5(28): 17450-17462, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715230

RESUMO

Biomass-derived porous carbons are one kind of sustainable, extensive, and flexible carbon material for CO2 capture. Here, we prepared several microporous carbons from poplar wood by three preparation routes. Especially, the residues of the poplar wood after the bioethanol process were explored as precursors to prepare activated carbon by KOH and ZnCl2 activation. By the adjustment of the preparation routes and the optimization of the activation conditions, these porous carbons exhibited diversified morphology (sponge, nanosheets, and honeycomb structure), tunable porosity (specific surface areas: 511-2153 m2/g), and narrow micropore distribution (0.55-1.2 nm). These carbons had a high CO2 uptake of up to 217 mg/g at 273 K and 1 bar, which was comparable with those of many N-doped porous carbons, and possessed moderate isosteric heat of CO2 adsorption (21.1-43.2 kJ/mol), good cyclic ability, and high CO2/N2 selectivity (Henry's law: 44.0). The results indicated that CO2 uptake of these carbons was mainly decided by their micropore volume (d < 1.0 nm) at 273 K and 1 bar. This work provides an important reference for preparing promising CO2 adsorbents with tunable structures from similar biomass resources.

15.
J Colloid Interface Sci ; 513: 304-313, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156238

RESUMO

The N-containing hyper-cross-linked polymers with different porosity and polarity were prepared from 4-vinylbenzyl chloride and 4-vinyl pyridine by the suspension polymerization and Friedel-Crafts reaction. A carbonization process by KOH chemical activation was carried out for the N-containing hyper-cross-linked polymers, and hence a series of N-doped porous carbons (NDPC) was easily fabricated. These porous materials were comparatively evaluated for CO2 adsorption. The NDPC were much more efficient than the N-containing hyper-cross-linked polymers for the CO2 capture and the CO2 uptake had a linear correlation to the ultramicropore volume (d ≤ 0.8 nm) with R2 = 0.9737. NDPC-10% possessed the highest CO2 uptake around 270 mg/g, and had the sufficient CO2/N2 selectivity of 20.2 at 273 K and 1.0 bar. The CO2/N2 selectivity of the N-containing hyper-cross-linked polymers was much higher than the NDPC due to the higher nitrogen content. The isosteric heat of adsorption on the N-containing hyper-cross-linked polymers ranged 29.0-41.2 kJ/mol while that on the NDPC was much lower (24.6-29.2 kJ/mol). The NDPC developed in this study may provide promising candidates for the CO2 capture.

16.
J Colloid Interface Sci ; 507: 42-50, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28780334

RESUMO

A series of N-vinylimidazole-modified hyper-cross-linked resins was prepared, and the porosity and polarity of these resins were effectively tuned by altering the feeding amount of N-vinylimidazole in the polymerization. The results indicated that the Brunauer-Emmett-Teller surface area sharply decreased from 1258 to 74m2/g, the micropore area lowered from 494 to 0m2/g, the total pore volume greatly decreased from 1.14 to 0.49cm3/g, and the micropore volume rapidly reduced from 0.39 to 0cm3/g with increasing the feeding amount of N-vinylimidazole from 10% to 50% (mol/mol), and the pore size distribution showed a large population of pores in the microporous region extending to a higher part of mesoporous region. Meanwhile, the polarity of the resins obviously improved with increasing the feeding amount of N-vinylimidazole. The nitrogen content increased from 0.579% to 7.68% (w/w), and the contact angle decreased from 89.0° to 31.0°. The adsorption experiments indicated that these resins had large equilibrium capacities to p-nitrophenol and o-nitrophenol from aqueous solution, and they could be completely regenerated by a mixed solvent containing 80% (v/v) of ethanol and 0.01mol/L of NaOH aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...