Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(14): e2304046, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311581

RESUMO

Sonodynamic therapy (SDT), a tumor treatment modality with high tissue penetration and low side effects, is able to selectively kill tumor cells by producing cytotoxic reactive oxygen species (ROS) with ultrasound-triggered sonosensitizers. N-type inorganic semiconductor TiO2 has low ROS quantum yields under ultrasound irradiation and inadequate anti-tumor activity. Herein, by using atomic layer deposition (ALD) to create a heterojunction between porous TiO2 and CoOx, the sonodynamic therapy efficiency of TiO2 can be improved. Compared to conventional techniques, the high controllability of ALD allows for the delicate loading of CoOx nanoparticles into TiO2 pores, resulting in the precise tuning of the interfaces and energy band structures and ultimately optimal SDT properties. In addition, CoOx exhibits a cascade of H2O2→O2→·O2 - in response to the tumor microenvironment, which not only mitigates hypoxia during the SDT process, but also contributes to the effect of chemodynamic therapy (CDT). Correspondingly, the synergistic CDT/SDT treatment is successful in inhibiting tumor growth. Thus, ALD provides new avenues for catalytic tumor therapy and other pharmaceutical applications.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Humanos , Espécies Reativas de Oxigênio , Catálise , Hipóxia
2.
Discov Nano ; 18(1): 122, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775605

RESUMO

The development of nanoparticles capable of inducing reactive oxygen species (ROS) formation has become an important strategy for cancer therapy. Simultaneously, the preparation of multifunctional nanoparticles that respond to the tumor microenvironment is crucial for the diagnosis and treatment of tumors. In this study, we designed a Molybdenum disulfide (MoS2) core coated with Manganese dioxide (MnO2), which possessed a good photothermal effect and could produce Fenton-like Mn2+ in response to highly expressed glutathione (GSH) in the tumor microenvironment, thereby generating a chemodynamic therapy (CDT). The nanoparticles were further modified with Methoxypoly(Ethylene Glycol) 2000 (mPEG-NH2) to improve their biocompatibility, resulting in the formation of MoS2@MnO2-PEG. These nanoparticles were shown to possess significant Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) imaging capabilities, making them useful in tumor diagnosis. In vitro and in vivo experiments demonstrated the antitumor ability of MoS2@MnO2-PEG, with a significant killing effect on tumor cells under combined treatment. These nanoparticles hold great potential for CDT/photothermal therapy (PTT) combined antitumor therapy and could be further explored in biomedical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...