Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
New Phytol ; 238(1): 80-95, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36300568

RESUMO

Ericaceous shrubs adapt to the nutrient-poor conditions in ombrotrophic peatlands by forming symbiotic associations with ericoid mycorrhizal (ERM) fungi. Increased nutrient availability may diminish the role of ERM pathways in shrub nutrient uptake, consequently altering the biogeochemical cycling within bogs. To explore the significance of ERM fungi in ombrotrophic peatlands, we developed the model MWMmic (a peat cohort-based biogeochemical model) into MWMmic-NP by explicitly incorporating plant-soil nitrogen (N) and phosphorus (P) cycling and ERM fungi processes. The new model was applied to simulate the biogeochemical cycles in the Mer Bleue (MB) bog in Ontario, Canada, and their responses to fertilization. MWMmic_NP reproduced the carbon(C)-N-P cycles and vegetation dynamics observed in the MB bog, and their responses to fertilization. Our simulations showed that fertilization increased shrub biomass by reducing the C allocation to ERM fungi, subsequently suppressing the growth of underlying Sphagnum mosses, and decreasing the peatland C sequestration. Our species removal simulation further demonstrated that ERM fungi were key to maintaining the shrub-moss coexistence and C sink function of bogs. Our results suggest that ERM fungi play a significant role in the biogeochemical cycles in ombrotrophic peatlands and should be considered in future modeling efforts.


Assuntos
Micorrizas , Áreas Alagadas , Fungos , Plantas/metabolismo , Biomassa , Fertilização , Solo
3.
Sci Total Environ ; 806(Pt 3): 151223, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717989

RESUMO

Peatlands store a large amount of organic carbon and are vulnerable to climate change and human disturbances. However, ecosystem-scale peatland models often do not explicitly simulate the decrease in peat substrate quality, i.e., decomposability or the dynamics of decomposers during peat decomposition, which are key controls in determining peat carbon's response to a changing environment. In this paper, we incorporated the tracking of each year's litter input (a cohort) and controls of microbial processes into the McGill Wetland Model (MWMmic) to address this discrepancy. Three major modifications were made: (1) the simple acrotelm-catotelm decomposition model in MWM was changed into a time-aggregated cohort model, to track the decrease in peat quality with decomposition age; (2) microbial dynamics: growth, respiration and death were incorporated into the model and decomposition rates are regulated by microbial biomass; and (3) vertical and horizontal transport of the dissolved organic carbon (DOC) were added and used to regulate the growth of microbial biomass. MWMmic was evaluated against measurements from the Mer Bleue peatland, a raised ombrotrophic bog located in southern Ontario, Canada. The model was able to replicate microbial and DOC dynamics, while at the same time reproduce the ecosystem-level CO2 and DOC fluxes. Sensitivity analysis with MWMmic showed increased peatland resilience to perturbations compared to the original MWM, because of the tracking of peat substrate quality. The analysis revealed the most important parameters in the model to be microbial carbon use efficiency (CUE) and turnover rate. Simulated microbial adaptation with those two physiological parameters less sensitive to disturbances leads to a significantly larger peat C loss in response to warming and water table drawdown. Thus, the rarely explored peatland microbial physiological traits merit further research. This work paves the way for further model development to examine important microbial controls on peatland's biogeochemical cycling.


Assuntos
Solo , Áreas Alagadas , Carbono , Ecossistema , Humanos , Ontário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA