Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(1): 86-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172614

RESUMO

The Hippo pathway has important roles in organ development, tissue homeostasis and tumour growth. Its downstream effector TAZ is a transcriptional coactivator that promotes target gene expression through the formation of biomolecular condensates. However, the mechanisms that regulate the biophysical properties of TAZ condensates to enable Hippo signalling are not well understood. Here using chemical crosslinking combined with an unbiased proteomics approach, we show that FUS associates with TAZ condensates and exerts a chaperone-like effect to maintain their proper liquidity and robust transcriptional activity. Mechanistically, the low complexity sequence domain of FUS targets the coiled-coil domain of TAZ in a phosphorylation-regulated manner, which ensures the liquidity and dynamicity of TAZ condensates. In cells lacking FUS, TAZ condensates transition into gel-like or solid-like assembles with immobilized TAZ, which leads to reduced expression of target genes and inhibition of pro-tumorigenic activity. Thus, our findings identify a chaperone-like function of FUS in Hippo regulation and demonstrate that appropriate biophysical properties of transcriptional condensates are essential for gene activation.


Assuntos
Proteínas Serina-Treonina Quinases , Transativadores , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Linhagem Celular Tumoral
2.
Nat Cell Biol ; 24(4): 513-525, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393539

RESUMO

DNA damage shuts down genome-wide transcription to prevent transcriptional mutagenesis and to initiate repair signalling, but the mechanism to stall elongating RNA polymerase II (Pol II) is not fully understood. Central to the DNA damage response, poly(ADP-ribose) polymerase 1 (PARP1) initiates DNA repair by translocating to the lesions where it catalyses protein poly(ADP-ribosylation). Here we report that PARP1 inhibits Pol II elongation by inactivating the transcription elongation factor P-TEFb, a CDK9-cyclin T1 (CycT1) heterodimer. After sensing damage, the activated PARP1 binds to transcriptionally engaged P-TEFb and modifies CycT1 at multiple positions, including histidine residues that are rarely used as an acceptor site. This prevents CycT1 from undergoing liquid-liquid phase separation that is required for CDK9 to hyperphosphorylate Pol II and to stimulate elongation. Functionally, poly(ADP-ribosylation) of CycT1 promotes DNA repair and cell survival. Thus, the P-TEFb-PARP1 signalling plays a protective role in transcription quality control and genomic stability maintenance after DNA damage.


Assuntos
Dano ao DNA , Fator B de Elongação Transcricional Positiva , ADP-Ribosilação , Ciclina T/química , Ciclina T/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
3.
Plant Sci ; 288: 110205, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31521217

RESUMO

Maize kernel size and weight are essential contributors to its yield. So the identification of the genes controlling kernel size and weight can give us a chance to gain the yield. Here, we identified a small kernel mutant, Zea mays small kernel 9 (Zmsmk9), in maize. Cytological observation showed that the development of the endosperm and embryo was delayed in Zmsmk9 mutants at the early stages, resulting in a small kernel phenotype. Interestingly, despite substantial variation in kernel size, the germination of Zmsmk9 seeds was comparable to that of WT, and could develop into normal plants with upright leaf architecture. We cloned Zmsmk9 via map-based cloning. ZmSMK9 encodes a P-type pentatricopeptide repeat protein that targets to mitochondria, and is involved in RNA splicing in mitochondrial NADH dehydrogenase5 (nad5) intron-1 and intron-4. Consistent with the delayed development phenotype, transcriptome analysis of 12-DAP endosperm showed that starch and zeins biosynthesis related genes were dramatically down regulated in Zmsmk9, while cell cycle and cell growth related genes were dramatically increased. As a result, ZmSMK9 is a novel gene required for the splicing of nad5 intron-1 and intron-4, kernel development, and plant architecture in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , NADH Desidrogenase/genética , Proteínas de Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Germinação/genética , Íntrons , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...