Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 136(17): 1968-1979, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32556142

RESUMO

ß-Thalassemia intermedia is a disorder characterized by ineffective erythropoiesis (IE), anemia, splenomegaly, and systemic iron overload. Novel approaches are being explored based on the modulation of pathways that reduce iron absorption (ie, using hepcidin activators like Tmprss6-antisense oligonucleotides [ASOs]) or increase erythropoiesis (by erythropoietin [EPO] administration or modulating the ability of transferrin receptor 2 [Tfr2] to control red blood cell [RBC] synthesis). Targeting Tmprss6 messenger RNA by Tmprss6-ASO was proven to be effective in improving IE and splenomegaly by inducing iron restriction. However, we postulated that combinatorial strategies might be superior to single therapies. Here, we combined Tmprss6-ASO with EPO administration or removal of a single Tfr2 allele in the bone marrow of animals affected by ß-thalassemia intermedia (Hbbth3/+). EPO administration alone or removal of a single Tfr2 allele increased hemoglobin levels and RBCs. However, EPO or Tfr2 single-allele deletion alone, respectively, exacerbated or did not improve splenomegaly in ß-thalassemic mice. To overcome this issue, we postulated that some level of iron restriction (by targeting Tmprss6) would improve splenomegaly while preserving the beneficial effects on RBC production mediated by EPO or Tfr2 deletion. While administration of Tmprss6-ASO alone improved the anemia, the combination of Tmprss6-ASO + EPO or Tmprss6-ASO + Tfr2 single-allele deletion produced significantly higher hemoglobin levels and reduced splenomegaly. In conclusion, our results clearly indicate that these combinatorial approaches are superior to single treatments in ameliorating IE and anemia in ß-thalassemia and could provide guidance to translate some of these approaches into viable therapies.


Assuntos
Eritropoetina/administração & dosagem , Eritropoetina/genética , Terapia Genética/métodos , Proteínas de Membrana/antagonistas & inibidores , Oligonucleotídeos Antissenso/administração & dosagem , Talassemia beta/terapia , Animais , Células Cultivadas , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/prevenção & controle , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligonucleotídeos Antissenso/farmacologia , Receptores da Transferrina/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Talassemia beta/metabolismo
2.
J Control Release ; 291: 80-89, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30342077

RESUMO

BACKGROUND: Trastuzumab is a monoclonal antibody which demonstrates efficacy for HER2 positive breast cancer patients. Recently, an increased incidence of brain metastasis in trastuzumab-treated patients has been reported. The reason for this may be the effectiveness of systemic trastuzumab allowing patients to survive longer thus providing time for brain metastases to develop, along with the lack of penetration of systemic therapies through the blood brain barrier. In recent years, several administration routes to the brain have been evaluated. Albeit advances in the field, there is still a need for improved delivery of therapeutic antibodies to the brain. To address this challenge, we have developed two gene therapy-based methods enabling continuous secretion of active trastuzumab in the brain. METHODS: We have developed two gene therapy approaches for the delivery of the therapeutic anti-HER2 monoclonal antibody, trastuzumab, to the brain. We utilized the helper dependent adenovirus vector, containing trastuzumab light and heavy chains coding sequences (HDAd-trastuzumab). In the first approach, we used the Transduced Autologous Restorative Gene Therapy (TARGT) platform, in which dermal fibroblasts of human and mouse origin, are ex-vivo transduced with HDAd-trastuzumab vector, rendering continuous secretion of active trastuzumab from the cells locally. These genetically engineered cells were subsequently implanted intracranially to mice, contralateral to HER2 positive breast carcinoma cells inoculation site, enabling continuous secretion of trastuzumab in the brain. In the second approach, we used the same HDAd-trastuzumab viral vector, directly injected intracranially, contralateral to the HER2 positive breast carcinoma cells inoculation site. Both methods enabled therapeutic concentrations of local in-vivo production of active trastuzumab in a mouse model of brain metastatic breast cancer. RESULTS: Trastuzumab secreted from the TARGT platform demonstrated in-vitro affinity and immune recruitment activity (ADCC) similar to recombinant trastuzumab (Herceptin, Genentech). When implanted in the brain of HER2 positive tumor-bearing mice, both the TARGT platform of dermal fibroblasts engineered to secrete trastuzumab and direct injection of HDAd-trastuzumab demonstrated remarkable intracranial tumor growth inhibitory effect. CONCLUSIONS: This work presents two gene therapy approaches for the administration of therapeutic antibodies to the brain. The TARGT platform of dermal fibroblasts engineered to secrete active trastuzumab, and the direct injection of HDAd-trastuzumab viral vector, both rendered continuous in-vivo secretion of active trastuzumab in the brain and demonstrated high efficacy. These two approaches present a proof of concept for promising gene therapy based administration methods for intracranial tumors as well as other brain diseases.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Neoplasias da Mama/patologia , Técnicas de Transferência de Genes , Trastuzumab/uso terapêutico , Adenoviridae/genética , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias da Mama/terapia , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Feminino , Fibroblastos/metabolismo , Fibroblastos/transplante , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Transdução Genética , Trastuzumab/administração & dosagem , Trastuzumab/genética
3.
J Gene Med ; 19(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28658716

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a symmetric inflammatory polyarthritis associated with high concentrations of pro-inflammatory, cytokines including tumor necrosis factor (TNF)-α. Adalimumab is a monoclonal antibody (mAb) that binds TNF-α, and is widely used to treat RA. Despite its proven clinical efficacy, adalimumab and other therapeutic mAbs have disadvantages, including the requirement for repeated bolus injections and the appearance of treatment limiting anti-drug antibodies. To address these issues, we have developed an innovative ex vivo gene therapy approach, termed transduced autologous restorative gene therapy (TARGT), to produce and secrete adalimumab for the treatment of RA. METHODS: Helper-dependent (HD) adenovirus vector containing adalimumab light and heavy chain coding sequences was used to transduce microdermal tissues and cells of human and mouse origin ex vivo, rendering sustained secretion of active adalimumab. The genetically engineered tissues were subsequently implanted in a mouse model of RA. RESULTS: Transduced human microdermal tissues implanted in SCID mice demonstrated 49 days of secretion of active adalimumab in the blood, at levels of tens of microgram per milliliter. In addition, transduced autologous dermal cells were implanted in the RA mouse model and demonstrated statistically significant amelioration in RA symptoms compared to naïve cell implantation and were similar to recombinant adalimumab bolus injections. CONCLUSIONS: The results of the present study report microdermal tissues engineered to secrete active adalimumab as a proof of concept for sustained secretion of antibody from the novel ex vivo gene therapy TARGT platform. This technology may now be applied to a range of antibodies for the therapy of other diseases.


Assuntos
Adalimumab/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Modelos Animais de Doenças , Fator de Necrose Tumoral alfa/metabolismo , Adalimumab/farmacocinética , Animais , Anticorpos Monoclonais/farmacocinética , Citocinas/metabolismo , Feminino , Engenharia Genética , Terapia Genética , Humanos , Masculino , Metotrexato/farmacologia , Camundongos , Camundongos SCID , Resultado do Tratamento
5.
Hum Gene Ther Clin Dev ; 26(4): 216-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26684446

RESUMO

Protein drugs are currently delivered by bolus injection and although treatment frequently is successful, these methods also have major drawbacks, which call for the development of alternative technologies allowing prolonged delivery of these drugs. We developed a new ex vivo gene therapy platform called Transduced Autologous Restorative Gene Therapy (TARGT) for sustained long term production and secretion of autologous therapeutic proteins. A biopsy of dermal tissue taken from the patient is transduced ex vivo with a viral vector encoding the required gene under a constitutive promoter. Following measurement of protein secretion ex vivo, the transduced dermal tissue is implanted back into the patient, where it secretes the therapeutic protein into the circulation for several months or longer. A major hurdle to this approach is potential immunogenicity of the transduced tissue following implantation. In this paper we describe the preclinical and early clinical development of this technology, which allowed for overcoming these hurdles. To that end, we have used the helper dependent (HD) adenoviral vector with newly designed expression cassette containing genetic elements to optimize transgene expression. Moreover, we have developed procedures for TARGT tissue implantation, with measures to improve engraftment and reduce inflammation and rejection. Implantation of human TARGT to severe combined immune deficient (SCID) mice indicated long-term production of active proteins in the blood. Preliminary results of a clinical trial from two anemic end-stage renal disease patients, implanted with TARGTs expressing the human erythropoietin (EPO) gene, demonstrated prolonged secretion with physiologic blood level of the hormone and hemoglobin maintenance in the desired range, for a period of at least 5 months without exogenous EPO administration. We believe that the TARGT technology has the potential to become a platform for the sustained delivery of therapeutic proteins in various clinical indications.


Assuntos
Eritropoetina/genética , Terapia Genética/métodos , Interferon-alfa/genética , Insuficiência Renal/terapia , Transplante de Pele/métodos , Adenoviridae/genética , Adulto , Idoso , Animais , Eritropoetina/sangue , Eritropoetina/metabolismo , Terapia Genética/efeitos adversos , Humanos , Interferon-alfa/sangue , Interferon-alfa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Pele/efeitos adversos
6.
J Am Chem Soc ; 135(11): 4191-4, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23477541

RESUMO

A new homogeneous chemiluminescent immunoassay method featuring the use of specific binding members separately labeled with an acridan-based chemiluminescent compound and a peroxidase is reported. Formation of an immunocomplex brings the chemiluminescent compound and the peroxidase into close proximity. Without any separation steps, a chemiluminescent signal is generated upon addition of a trigger solution, and the intensity is directly correlated to the quantity of the analyte.


Assuntos
Acridinas/química , Imunoensaio/métodos , Substâncias Luminescentes/química , Medições Luminescentes/métodos , Animais , Anticorpos Imobilizados/química , AMP Cíclico/análise , Peroxidase do Rábano Silvestre/análise , Humanos , Interleucina-8/análise , Camundongos , Antígeno Prostático Específico/análise , Ratos , Ovinos
7.
PLoS Genet ; 2(12): e214, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17194220

RESUMO

Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils. Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals.


Assuntos
Arthrobacter/crescimento & desenvolvimento , Arthrobacter/genética , Genoma Bacteriano/genética , Análise de Sequência de DNA , Microbiologia do Solo , Arthrobacter/química , Arthrobacter/metabolismo , Atrazina/metabolismo , Biodegradação Ambiental , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/fisiologia , Elementos de DNA Transponíveis/genética , DNA Circular/química , Metabolismo Energético/genética , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Sequências Repetitivas de Ácido Nucleico
8.
J Bacteriol ; 188(16): 5859-64, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16885454

RESUMO

TrzN, the broad-specificity triazine hydrolase from Arthrobacter and Nocardioides spp., is reportedly in the amidohydrolase superfamily of metalloenzymes, but previous studies suggested that a metal was not required for activity. To help resolve that conundrum, a double chaperone expression system was used to produce multimilligram quantities of functionally folded, recombinant TrzN. The TrzN obtained from Escherichia coli (trzN) cells cultured with increasing zinc in the growth medium showed corresponding increases in specific activity, and enzyme obtained from cells grown with 500 muM zinc showed maximum activity. Recombinant TrzN contained 1 mole of Zn per mole of TrzN subunit. Maximally active TrzN was not affected by supplementation with most metals nor by EDTA, consistent with previous observations (E. Topp, W. M. Mulbry, H. Zhu, S. M. Nour, and D. Cuppels, Appl. Environ. Microbiol. 66:3134-3141, 2000) which had led to the conclusion that TrzN is not a metalloenzyme. Fully active native TrzN showed a loss of greater than 90% of enzyme activity and bound zinc when treated with the metal chelator 8-hydroxyquinoline-5-sulfonic acid. While exogenously added zinc or cobalt restored activity to metal-depleted TrzN, cobalt supported lower activity than did zinc. Iron, manganese, nickel, and copper did not support TrzN activity. Both Zn- and Co-TrzN showed different relative activities with different s-triazine substrates. Co-TrzN showed a visible absorption spectrum characteristic of other members of the amidohydrolase superfamily replaced with cobalt.


Assuntos
Amidoidrolases/metabolismo , Arthrobacter/enzimologia , Zinco/química , Amidoidrolases/química , Sequência de Aminoácidos , Arthrobacter/genética , Cobalto/química , Cinética
9.
Appl Environ Microbiol ; 72(4): 2491-5, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16597948

RESUMO

TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of alpha(2) and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret.


Assuntos
Alofanato Hidrolase , Enterobacter cloacae/enzimologia , Alofanato Hidrolase/química , Alofanato Hidrolase/genética , Alofanato Hidrolase/isolamento & purificação , Alofanato Hidrolase/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biureto/metabolismo , Meios de Cultura , Enterobacter cloacae/genética , Enterobacter cloacae/crescimento & desenvolvimento , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Hidrólise , Triazinas/metabolismo
10.
Appl Environ Microbiol ; 71(8): 4437-45, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16085834

RESUMO

Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease.


Assuntos
Alofanato Hidrolase/metabolismo , Bactérias Gram-Negativas/enzimologia , Triazinas/metabolismo , Ureia/análogos & derivados , Urease/metabolismo , Alofanato Hidrolase/genética , Amônia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Clonagem Molecular , Enterobacter cloacae/enzimologia , Enterobacter cloacae/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Bactérias Gram-Negativas/genética , Cinética , Filogenia , Pseudomonas/enzimologia , Análise de Sequência de DNA , Ureia/química , Ureia/metabolismo
11.
J Bacteriol ; 187(11): 3731-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15901697

RESUMO

AtzF, allophanate hydrolase, is a recently discovered member of the amidase signature family that catalyzes the terminal reaction during metabolism of s-triazine ring compounds by bacteria. In the present study, the atzF gene from Pseudomonas sp. strain ADP was cloned and expressed as a His-tagged protein, and the protein was purified and characterized. AtzF had a deduced subunit molecular mass of 66,223, based on the gene sequence, and an estimated holoenzyme molecular mass of 260,000. The active protein did not contain detectable metals or organic cofactors. Purified AtzF hydrolyzed allophanate with a k(cat)/K(m) of 1.1 x 10(4) s(-1) M(-1), and 2 mol of ammonia was released per mol allophanate. The substrate range of AtzF was very narrow. Urea, biuret, hydroxyurea, methylcarbamate, and other structurally analogous compounds were not substrates for AtzF. Only malonamate, which strongly inhibited allophanate hydrolysis, was an alternative substrate, with a greatly reduced k(cat)/K(m) of 21 s(-1) M(-1). Data suggested that the AtzF catalytic cycle proceeds through a covalent substrate-enzyme intermediate. AtzF reacts with malonamate and hydroxylamine to generate malonohydroxamate, potentially derived from hydroxylamine capture of an enzyme-tethered acyl group. Three putative catalytically important residues, one lysine and two serines, were altered by site-directed mutagenesis, each with complete loss of enzyme activity. The identity of a putative serine nucleophile was probed using phenyl phosphorodiamidate that was shown to be a time-dependent inhibitor of AtzF. Inhibition was due to phosphoroamidation of Ser189 as shown by liquid chromatography/matrix-assisted laser desorption ionization mass spectrometry. The modified residue corresponds in sequence alignments to the nucleophilic serine previously identified in other members of the amidase signature family. Thus, AtzF affects the cleavage of three carbon-to-nitrogen bonds via a mechanism similar to that of enzymes catalyzing single-amide-bond cleavage reactions. AtzF orthologs appear to be widespread among bacteria.


Assuntos
Alofanato Hidrolase/genética , Alofanato Hidrolase/metabolismo , Pseudomonas/enzimologia , Pseudomonas/genética , Ureia/análogos & derivados , Alofanato Hidrolase/isolamento & purificação , Sequência de Aminoácidos , Amônia/metabolismo , Sequência Conservada , Inibidores Enzimáticos/farmacologia , Hidroxilamina/metabolismo , Cinética , Malonatos/metabolismo , Metais/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Organofosfatos/farmacologia , Especificidade por Substrato , Ureia/metabolismo
12.
Appl Environ Microbiol ; 71(5): 2214-20, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15870302

RESUMO

The TrzN protein, which is involved in s-triazine herbicide catabolism by Arthrobacter aurescens TC1, was cloned and expressed in Escherichia coli as a His-tagged protein. The recombinant protein was purified via nickel column chromatography. The purified TrzN protein was tested with 31 s-triazine and pyrimidine ring compounds; 22 of the tested compounds were substrates. TrzN showed high activity with sulfur-substituted s-triazines and the highest activity with ametryn sulfoxide. Hydrolysis of ametryn sulfoxide by TrzN, both in vitro and in vivo, yielded a product(s) that reacted with 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) to generate a diagnostic blue product. Atrazine chlorohydrolase, AtzA, did not hydrolyze ametryn sulfoxide, and no color was formed by amending those enzyme incubations with NBD-Cl. TrzN and AtzA could also be distinguished by reaction with ametryn. TrzN, but not AtzA, hydrolyzed ametryn to methylmercaptan. Methylmercaptan reacted with NBD-Cl to produce a diagnostic yellow product having an absorption maximum at 420 nm. The yellow color with ametryn was shown to selectively demonstrate the presence of TrzN, but not AtzA or other enzymes, in whole microbial cells. The present study was the first to purify an active TrzN protein in recombinant form and develop a colorimetric test for determining TrzN activity, and it significantly extends the known substrate range for TrzN.


Assuntos
Arthrobacter/enzimologia , Proteínas de Bactérias/análise , Hidrolases/análise , Hidrolases/metabolismo , Sequência de Aminoácidos , Colorimetria , Escherichia coli/genética , Dados de Sequência Molecular , Proteínas Recombinantes/análise , Especificidade por Substrato
13.
Plant Biotechnol J ; 3(5): 475-86, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17173634

RESUMO

Atrazine is one of the most widely used herbicides in the USA. Atrazine chlorohydrolase (AtzA), the first enzyme in a six-step pathway leading to the mineralization of atrazine in Gram-negative soil bacteria, catalyses the hydrolytic dechlorination and detoxification of atrazine to hydroxyatrazine. In this study, we investigated the potential use of transgenic plants expressing atzA to take up, dechlorinate and detoxify atrazine. Alfalfa, Arabidopsis thaliana and tobacco were transformed with a modified bacterial atzA gene, p-atzA, under the control of the cassava vein mosaic virus promoter. All transgenic plant species actively expressed p-atzA and grew over a wide range of atrazine concentrations. Thin layer chromatography analyses indicated that in planta expression of p-atzA resulted in the production of hydroxyatrazine. Hydroponically grown transgenic tobacco and alfalfa dechlorinated atrazine to hydroxyatrazine in leaves, stems and roots. Moreover, p-atzA was found to be useful as a conditional-positive selection system to isolate alfalfa and Arabidopsis transformants following Agrobacterium-mediated transformation. Our work suggests that the in planta expression of p-atzA may be useful for the development of plants for the phytoremediation of atrazine-contaminated soils and soil water, and as a marker gene to select for the integration of exogenous DNA into the plant genome.

14.
Appl Environ Microbiol ; 70(7): 4402-7, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15240330

RESUMO

Arthrobacter aurescens strain TC1 metabolizes atrazine to cyanuric acid via TrzN, AtzB, and AtzC. The complete sequence of a 160-kb bacterial artificial chromosome clone indicated that trzN, atzB, and atzC are linked on the A. aurescens genome. TrzN, AtzB, and AtzC were shown to be functional in Escherichia coli. Hybridization studies localized trzN, atzB, and atzC to a 380-kb plasmid in A. aurescens strain TC1.


Assuntos
Arthrobacter/genética , Atrazina/metabolismo , Escherichia coli/genética , Genes Bacterianos , Ligação Genética , Sequência de Bases , Cromossomos Artificiais Bacterianos , Dados de Sequência Molecular , Plasmídeos
15.
Appl Environ Microbiol ; 70(4): 2503-7, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15066850

RESUMO

Nonselected and natural populations of Escherichia coli from 12 animal sources and humans were examined for the presence and types of 14 tetracycline resistance determinants. Of 1,263 unique E. coli isolates from humans, pigs, chickens, turkeys, sheep, cows, goats, cats, dogs, horses, geese, ducks, and deer, 31% were highly resistant to tetracycline. More than 78, 47, and 41% of the E. coli isolates from pigs, chickens, and turkeys were resistant or highly resistant to tetracycline, respectively. Tetracycline MICs for 61, 29, and 29% of E. coli isolates from pig, chickens, and turkeys, respectively, were >/=233 micro g/ml. Muliplex PCR analyses indicated that 97% of these strains contained at least 1 of 14 tetracycline resistance genes [tetA, tetB, tetC, tetD, tetE, tetG, tetK, tetL, tetM, tetO, tetS, tetA(P), tetQ, and tetX] examined. While the most common genes found in these isolates were tetB (63%) and tetA (35%), tetC, tetD, and tetM were also found. E. coli isolates from pigs and chickens were the only strains to have tetM. To our knowledge, this represents the first report of tetM in E. coli.


Assuntos
Escherichia coli/genética , Genes Bacterianos , Resistência a Tetraciclina/genética , Animais , DNA Bacteriano/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Humanos , Epidemiologia Molecular , Reação em Cadeia da Polimerase , Especificidade da Espécie
16.
Appl Environ Microbiol ; 69(6): 3653-7, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12788776

RESUMO

Cyanuric acid hydrolase (AtzD) from Pseudomonas sp. strain ADP was purified to homogeneity. Of 22 cyclic amides and triazine compounds tested, only cyanuric acid and N-methylisocyanuric acid were substrates. Other cyclic amidases were found not to hydrolyze cyanuric acid. Ten bacteria that use cyanuric acid as a sole nitrogen source for growth were found to contain either atzD or trzD, but not both genes.


Assuntos
Amidoidrolases/isolamento & purificação , Amidoidrolases/metabolismo , Evolução Molecular , Pseudomonas/enzimologia , Pseudomonas/genética , Amidoidrolases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , Herbicidas/metabolismo , Especificidade por Substrato , Triazinas/química , Triazinas/metabolismo
17.
J Bacteriol ; 184(19): 5376-84, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12218024

RESUMO

N-Isopropylammelide isopropylaminohydrolase, AtzC, the third enzyme in the atrazine degradation pathway in Pseudomonas sp. strain ADP, catalyzes the stoichiometric hydrolysis of N-isopropylammelide to cyanuric acid and isopropylamine. The atzC gene was cloned downstream of the tac promoter and expressed in Escherichia coli, where the expressed enzyme comprised 36% of the soluble protein. AtzC was purified to homogeneity by ammonium sulfate precipitation and phenyl column chromatography. It has a subunit size of 44,938 kDa and a holoenzyme molecular weight of 174,000. The K(m) and k(cat) values for AtzC with N-isopropylammelide were 406 micro M and 13.3 s(-1), respectively. AtzC hydrolyzed other N-substituted amino dihydroxy-s-triazines, and those with linear N-alkyl groups had higher k(cat) values than those with branched alkyl groups. Native AtzC contained 0.50 eq of Zn per subunit. The activity of metal-depleted AtzC was restored with Zn(II), Fe(II), Mn(II), Co(II), and Ni(II) salts. Cobalt-substituted AtzC had a visible absorbance band at 540 nm (Delta epsilon = 84 M(-1) cm(-1)) and exhibited an axial electron paramagnetic resonance (EPR) signal with the following effective values: g((x)) = 5.18, g((y)) = 3.93, and g((z)) = 2.24. Incubating cobalt-AtzC with the competitive inhibitor 5-azacytosine altered the effective EPR signal values to g((x)) = 5.11, g((y)) = 4.02, and g((z)) = 2.25 and increased the microwave power at half saturation at 10 K from 31 to 103 mW. Under the growth conditions examined, our data suggest that AtzC has a catalytically essential, five-coordinate Zn(II) metal center in the active site and specifically catalyzes the hydrolysis of intermediates generated during the metabolism of s-triazine herbicides.


Assuntos
Amidoidrolases , Aminoidrolases , Atrazina/metabolismo , Proteínas de Bactérias , Pseudomonas/enzimologia , Amidoidrolases/química , Amidoidrolases/genética , Amidoidrolases/isolamento & purificação , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Aminoidrolases/química , Aminoidrolases/genética , Aminoidrolases/isolamento & purificação , Aminoidrolases/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Dados de Sequência Molecular , Pseudomonas/genética , Alinhamento de Sequência , Análise Espectral/métodos , Especificidade por Substrato , Zinco/química
18.
Appl Environ Microbiol ; 68(9): 4672-5, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12200330

RESUMO

2-Chloro-4,6-diamino-s-triazine (CAAT) is a metabolite of atrazine biodegradation in soils. Atrazine chlorohydrolase (AtzA) catalyzes the dechlorination of atrazine but is unreactive with CAAT. In this study, melamine deaminase (TriA), which is 98% identical to AtzA, catalyzed deamination of CAAT to produce 2-chloro-4-amino-6-hydroxy-s-triazine (CAOT). CAOT underwent dechlorination via hydroxyatrazine ethylaminohydrolase (AtzB) to yield ammelide. This represents a newly discovered dechlorination reaction for AtzB. Ammelide was subsequently hydrolyzed by N-isopropylammelide isopropylaminohydrolase to produce cyanuric acid, a compound metabolized by a variety of soil bacteria.


Assuntos
Proteínas de Bactérias , Escherichia coli/enzimologia , Hidrolases/metabolismo , Proteínas/metabolismo , Triazinas/metabolismo , Amidoidrolases/metabolismo , Aminoidrolases , Biodegradação Ambiental , Hidrólise , Microbiologia do Solo
19.
Appl Environ Microbiol ; 68(3): 1358-66, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11872488

RESUMO

A naturally occurring atrazine-resistant cyanobacterial isolate, strain SG2, was isolated from an atrazine-containing wastewater treatment system at the Syngenta atrazine production facility in St. Gabriel, La. Strain SG2 was resistant to 1,000 microg of atrazine per ml but showed relatively low resistance to diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea]. Analyses of 16S ribosomal DNA indicated that strain SG2 falls into the Synechocystis/Pleurocapsa/Microcystis group. Photosynthetically driven oxygen evolution in strain SG2 was only slightly inhibited (about 10%) by 2,000 microg of atrazine per ml, whereas in the control strain Synechocystis 6803, oxygen evolution was inhibited 90% by 1,000 microg of atrazine per ml. No atrazine accretion, mineralization, or metabolites were detected when strain SG2 was grown with [(14)C]atrazine. Strain SG2 contained three copies of the psbA gene, which encodes the D(1) protein of the photosystem II reaction center. Nucleotide sequence analyses indicated that the psbA2 and psbA3 genes encoded predicted proteins with the same amino acid sequence. However, the psbA1 gene product contained five extra amino acids, which were not found in PsbA proteins from five other cyanobacteria. Moreover, the PsbA1 protein from strain SG2 had an additional 13 amino acid changes compared to the PsbA2/PsbA3 proteins and contained 10 amino acid alterations compared to conserved residues found in other cyanobacteria. Reverse transcriptase PCR analysis indicated that the psbA1 gene and the psbA2/psbA3 gene(s) were expressed in photosynthetically grown cells in the presence of atrazine. These results suggest that strong selection pressure conferred by the continual input of atrazine has contributed to the evolution of a herbicide-resistant, yet photosynthetically efficient, psbA gene in a cyanobacterium.


Assuntos
Atrazina/farmacologia , Cianobactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Herbicidas/farmacologia , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II , Sequência de Aminoácidos , Atrazina/metabolismo , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , DNA Ribossômico/análise , Diurona/farmacologia , Herbicidas/metabolismo , Dados de Sequência Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...