Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38475310

RESUMO

The effect of surface modification by an arc discharge plasma in a nitrogen flow with treatment durations of 5 and 10 min on the physicochemical properties and biocompatibility of the surface of composites based on polylactic acid and hydroxyapatite (PLA/HA) with different mass ratios (80/20, 70/30, 60/40) has been investigated. The aim of this work was to show the correlation between the changes of the physicochemical characteristics (chemical compound, morphology, wettability) of the surface layer of the PLA/HA composites and the cell viability (macrophages) in the presence of the plasma-modified materials. The dependence of alterations of the functional properties (wettability, biocompatibility) on the change in the chemical composition under the plasma exposure has been established. The chemical composition was studied using X-ray photoelectron spectroscopy (XPS), the surface morphology was researched with scanning electron microscopy (SEM), and the wettability of the composite's surface was analyzed by measuring the contact angle and surface energy calculation. In addition, the viability of macrophages was investigated when the macrophages from three donors interacted with a modified PLA/HA surface. It was found that the formation of the new functional groups, -C-N and N-C=O/C=O, improves the wettability of the surface of the composites and promotes the viability of macrophages in the presence of the composite materials. The fundamental principles for obtaining promising materials with the required properties for eliminating bone defects have been created.

2.
ACS Appl Mater Interfaces ; 14(37): 41742-41750, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069153

RESUMO

We have explored the effect of low-temperature barrier discharge plasma treatment in oxygen, nitrogen, and argon on modification of the physicochemical properties of polylactic acid (PLA)-based scaffolds. The cellular-mediated immune response to the interaction of macrophages of three donors with the modified surface of PLA-based scaffolds was also investigated. Carbonization of the PLA surface accompanied by a carbon atomic concentration increase is shown to occur following plasma treatment. Argon plasma significantly affects the wettability characteristics of PLA; the hydrophilicity and lipophilicity are improved, and the surface energy is increased. The viability of cells in the presence of plasma-modified PLA scaffolds is lower than that for unmodified PLA but remains greater than that for the negative control. We find that PLA scaffolds do not cause increased expression of the proinflammatory (TNFα, IL-6, IL-1ß) cytokines after 6 days of cell cultivation. At the same time, PLA scaffolds do not affect the increased production of anti-inflammatory cytokines (IL-10).


Assuntos
Interleucina-10 , Gases em Plasma , Argônio , Carbono , Interleucina-6 , Nitrogênio , Oxigênio , Gases em Plasma/química , Poliésteres/química , Temperatura , Alicerces Teciduais/química , Fator de Necrose Tumoral alfa
3.
ACS Biomater Sci Eng ; 6(7): 3967-3974, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463309

RESUMO

Direct current (DC) reactive magnetron sputtering is as an efficient method for enhancing the biocompatibility of poly(ε-caprolactone) (PCL) scaffolds. However, the PCL chemical bonding state, the composition of the deposited coating, and their interaction with immune cells remain unknown. Herein, we demonstrated that the DC reactive magnetron sputtering of the titanium target in a nitrogen atmosphere leads to the formation of nitrogen-containing moieties and the titanium dioxide coating on the scaffold surface. We have provided the possible mechanism of PCL fragmentation and coating formation supported by XPS results and DFT calculations. Our preliminary biological studies suggest that DC reactive magnetron sputtering of the titanium target could be an effective tool to control macrophage functional responses toward PCL scaffolds as it allows to inhibit respiratory burst while retaining cell viability and scavenging activity.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Macrófagos , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA