Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Aging (Albany NY) ; 15(24): 14509-14552, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38149987

RESUMO

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.


Assuntos
Galactose , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Imunoglobulina G/genética , Polissacarídeos/metabolismo
2.
Nat Genet ; 55(9): 1448-1461, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37679419

RESUMO

Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on 'around the clock' glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Estudo de Associação Genômica Ampla , Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Colo
3.
Genes (Basel) ; 13(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36292579

RESUMO

We propose a novel effective framework for the analysis of the shared genetic background for a set of genetically correlated traits using SNP-level GWAS summary statistics. This framework called SHAHER is based on the construction of a linear combination of traits by maximizing the proportion of its genetic variance explained by the shared genetic factors. SHAHER requires only full GWAS summary statistics and matrices of genetic and phenotypic correlations between traits as inputs. Our framework allows both shared and unshared genetic factors to be effectively analyzed. We tested our framework using simulation studies, compared it with previous developments, and assessed its performance using three real datasets: anthropometric traits, psychiatric conditions and lipid concentrations. SHAHER is versatile and applicable to summary statistics from GWASs with arbitrary sample sizes and sample overlaps, allows for the incorporation of different GWAS models (Cox, linear and logistic), and is computationally fast.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Patrimônio Genético , Lipídeos
4.
Front Microbiol ; 13: 811922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572712

RESUMO

Being one of the most dynamic entities in the human body, glycosylation of proteins fine-tunes the activity of the organismal machinery, including the immune system, and mediates the interaction with the human microbial consortium, typically represented by the gut microbiome. Using data from 194 healthy individuals, we conducted an associational study to uncover potential relations between the gut microbiome and the blood plasma N-glycome, including N-glycome of immunoglobulin G. While lacking strong linkages on the multivariate level, we were able to identify associations between alpha and beta microbiome diversity and the blood plasma N-glycome profile. Moreover, for two bacterial genera, namely, Bilophila and Clostridium innocuum, significant associations with specific glycans were also shown. The study's results suggest a non-trivial, possibly weak link between the total plasma N-glycome and the gut microbiome, predominantly involving glycans related to the immune system proteins, including immunoglobulin G. Further studies of glycans linked to microbiome-related proteins in well-selected patient groups are required to conclusively establish specific associations.

5.
Nat Commun ; 13(1): 1586, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332118

RESUMO

Post-translational modifications diversify protein functions and dynamically coordinate their signalling networks, influencing most aspects of cell physiology. Nevertheless, their genetic regulation or influence on complex traits is not fully understood. Here, we compare the genetic regulation of the same PTM of two proteins - glycosylation of transferrin and immunoglobulin G (IgG). By performing genome-wide association analysis of transferrin glycosylation, we identify 10 significantly associated loci, 9 of which were not reported previously. Comparing these with IgG glycosylation-associated genes, we note protein-specific associations with genes encoding glycosylation enzymes (transferrin - MGAT5, ST3GAL4, B3GAT1; IgG - MGAT3, ST6GAL1), as well as shared associations (FUT6, FUT8). Colocalisation analyses of the latter suggest that different causal variants in the FUT genes regulate fucosylation of the two proteins. Glycosylation of these proteins is thus genetically regulated by both shared and protein-specific mechanisms.


Assuntos
Estudo de Associação Genômica Ampla , Transferrina , Glicosilação , Imunoglobulina G/metabolismo , Processamento de Proteína Pós-Traducional , Transferrina/genética , Transferrina/metabolismo
6.
Protoplasma ; 259(5): 1321-1330, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35080665

RESUMO

High biological activity of natural furocoumarins is often linked to a series of adverse side effects, e.g., genotoxicity. This makes it desirable to develop semi-synthetic derivatives with reduced negative activity while retaining or even enhancing the positive properties. Previously, we have studied the genotoxic activity of a library of twenty-one 1,2,3-triazolyl-modified furocoumarins and 2,3-dihydrofurocoumarins and identified modifications that minimize the negative properties. In the current article, we report on an investigation into the cytotoxic activity of the same library. We have aimed to rank the substances in order of the severity of their cytotoxicity and therefore to predict, with the use of statistical processing, the most promising substituents for the furocoumarin scaffold.


Assuntos
Antineoplásicos , Furocumarinas , Antioxidantes , Dano ao DNA , Furocumarinas/farmacologia
7.
Hum Mol Genet ; 31(10): 1545-1559, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34791244

RESUMO

Changes in the N-glycosylation of immunoglobulin G (IgG) are often observed in pathological states, such as autoimmune, inflammatory, neurodegenerative, cardiovascular diseases and some types of cancer. However, in most cases, it is not clear if the disease onset causes these changes, or if the changes in IgG N-glycosylation are among the risk factors for the diseases. The aim of this study was to investigate the casual relationships between IgG N-glycosylation traits and 12 diseases, in which the alterations of IgG N-glycome were previously reported, using two sample Mendelian randomization (MR) approach. We have performed two sample MR using publicly available summary statistics of genome-wide association studies of IgG N-glycosylation and disease risks. Our results indicate positive causal effect of systemic lupus erythematosus (SLE) on the abundance of N-glycans with bisecting N-acetylglucosamine in the total IgG N-glycome. Therefore, we suggest regarding this IgG glycosylation trait as a biomarker of SLE. We also emphasize the need for more powerful GWAS studies of IgG N-glycosylation to further elucidate the causal effect of IgG N-glycome on the diseases.


Assuntos
Imunoglobulina G , Lúpus Eritematoso Sistêmico , Estudo de Associação Genômica Ampla , Glicosilação , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Lúpus Eritematoso Sistêmico/genética , Polissacarídeos/genética
8.
Pharmgenomics Pers Med ; 14: 1211-1220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588798

RESUMO

BACKGROUND: Previous studies suggest a potential link between glycosylation and prostate cancer. To better characterize the relationship between the two, we performed a study to comprehensively evaluate the associations between genetically predicted blood plasma N-glycan levels and prostate cancer risk. METHODS: Using genetic variants associated with N-glycan levels as instruments, we evaluated the associations between levels of 138 plasma N-glycans and prostate cancer risk. We analyzed data of 79,194 cases and 61,112 controls of European ancestry included in the consortia of BPC3, CAPS, CRUK, PEGASUS, and PRACTICAL. RESULTS: We identified three N-glycans with genetically predicted levels in plasma to be associated with prostate cancer risk after Bonferroni correction. The estimated odds ratios (95% confidence intervals) were 1.29 (1.20-1.40), 0.80 (0.74-0.88), and 0.79 (0.72-0.87) for PGP18, PGP33, and PGP109, respectively, per every one standard deviation increase in genetically predicted levels of N-glycan. However, the instruments for these N-glycans only involved one to two variants. The proportions of variations that can be explained by the instruments range from 1.58% to 2.95% for these three N-glycans. CONCLUSION: We observed associations between genetically predicted levels of three N-glycans PGP18, PGP33, and PGP109 and prostate cancer risk. Given the correlated nature of the N-glycans and that many N-glycans share genetic loci, pleiotropy is a major concern. Future work is warranted to better characterize the relationship between N-glycans and prostate cancer.

9.
Adv Exp Med Biol ; 1325: 151-171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495534

RESUMO

Although changes in protein glycosylation are observed in a wide range of diseases and pathological states, the examples of use of glycans as biomarkers and therapeutic targets are limited. This is not in small part because the understanding of human glycome regulation in vivo is incomplete and fragmented. Combination of human glycomics and genomics offers a powerful "data-driven hypotheses" approach to dissect the complex human glycobiology in vivo in an agnostic manner.In this chapter we review a decade of quantitative genetic studies of human N-glycome, including studies of its heritability and gene-mapping via genome-wide association studies (GWASs). We show that GWASs of human N-glycome start revealing regulators of the biochemical network of N-glycosylation. Some of these regulators demonstrate pleiotropic effects on human disease, especially autoimmune and inflammatory. We emphasize the use of in silico functional methods and multi-omics approaches to prioritize functional mechanisms to be further validated in laboratory experiments. This combined approach will lead to better understanding of mechanisms of regulation of human protein glycosylation and will provide a rich source of etiologic insight, therapeutic interventions, and biomarkers.


Assuntos
Estudo de Associação Genômica Ampla , Glicômica , Genômica , Glicosilação , Humanos , Polissacarídeos
10.
Ann Rheum Dis ; 80(9): 1227-1235, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33926923

RESUMO

BACKGROUND AND OBJECTIVES: Chronic widespread musculoskeletal pain (CWP) is a symptom of fibromyalgia and a complex trait with poorly understood pathogenesis. CWP is heritable (48%-54%), but its genetic architecture is unknown and candidate gene studies have produced inconsistent results. We conducted a genome-wide association study to get insight into the genetic background of CWP. METHODS: Northern Europeans from UK Biobank comprising 6914 cases reporting pain all over the body lasting >3 months and 242 929 controls were studied. Replication of three independent genome-wide significant single nucleotide polymorphisms was attempted in six independent European cohorts (n=43 080; cases=14 177). Genetic correlations with risk factors, tissue specificity and colocalisation were examined. RESULTS: Three genome-wide significant loci were identified (rs1491985, rs10490825, rs165599) residing within the genes Ring Finger Protein 123 (RNF123), ATPase secretory pathway Ca2+transporting 1 (ATP2C1) and catechol-O-methyltransferase (COMT). The RNF123 locus was replicated (meta-analysis p=0.0002), the ATP2C1 locus showed suggestive association (p=0.0227) and the COMT locus was not replicated. Partial genetic correlation between CWP and depressive symptoms, body mass index, age of first birth and years of schooling were identified. Tissue specificity and colocalisation analysis highlight the relevance of skeletal muscle in CWP. CONCLUSIONS: We report a novel association of RNF123 locus and a suggestive association of ATP2C1 locus with CWP. Both loci are consistent with a role of calcium regulation in CWP. The association with COMT, one of the most studied genes in chronic pain field, was not confirmed in the replication analysis.


Assuntos
ATPases Transportadoras de Cálcio/genética , Dor Crônica/genética , Dor Musculoesquelética/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Catecol O-Metiltransferase/genética , Dor Crônica/fisiopatologia , Depressão/genética , Feminino , Fibromialgia/fisiopatologia , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Dor Musculoesquelética/fisiopatologia , Polimorfismo de Nucleotídeo Único , Adulto Jovem
11.
Hum Mol Genet ; 30(13): 1259-1270, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33710309

RESUMO

The N-glycosylation of immunoglobulin G (IgG) affects its structure and function. It has been demonstrated that IgG N-glycosylation patterns are inherited as complex quantitative traits. Genome-wide association studies identified loci harboring genes encoding enzymes directly involved in protein glycosylation as well as loci likely to be involved in regulation of glycosylation biochemical pathways. Many of these loci could be linked to immune functions and risk of inflammatory and autoimmune diseases. The aim of the present study was to discover and replicate new loci associated with IgG N-glycosylation and to investigate possible pleiotropic effects of these loci onto immune function and the risk of inflammatory and autoimmune diseases. We conducted a multivariate genome-wide association analysis of 23 IgG N-glycosylation traits measured in 8090 individuals of European ancestry. The discovery stage was followed up by replication in 3147 people and in silico functional analysis. Our study increased the total number of replicated loci from 22 to 29. For the discovered loci, we suggest a number of genes potentially involved in the control of IgG N-glycosylation. Among the new loci, two (near RNF168 and TNFRSF13B) were previously implicated in rare immune deficiencies and were associated with levels of circulating immunoglobulins. For one new locus (near AP5B1/OVOL1), we demonstrated a potential pleiotropic effect on the risk of asthma. Our findings underline an important link between IgG N-glycosylation and immune function and provide new clues to understanding their interplay.


Assuntos
Loci Gênicos/genética , Pleiotropia Genética/genética , Estudo de Associação Genômica Ampla/métodos , Imunidade/genética , Imunoglobulina G/genética , Alelos , Doenças Autoimunes/genética , Estudos de Coortes , Simulação por Computador , Frequência do Gene , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Genótipo , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Inflamação/genética , Análise Multivariada , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
12.
Front Genet ; 12: 627989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613642

RESUMO

The ever-growing genome-wide association studies (GWAS) have revealed widespread pleiotropy. To exploit this, various methods that jointly consider associations of a genetic variant with multiple traits have been developed. Most efforts have been made concerning improving GWAS discovery power. However, how to replicate these discovered pleiotropic loci has yet to be discussed thoroughly. Unlike a single-trait scenario, multi-trait replication is not trivial considering the underlying genotype-multi-phenotype map of the associations. Here, we evaluate four methods for replicating multi-trait associations, corresponding to four levels of replication strength. Weak replication cannot justify pleiotropic genetic effects, whereas strong replication using our developed correlation methods can inform consistent pleiotropic genetic effects across the discovery and replication samples. We provide a protocol for replicating multi-trait genetic associations in practice. The described methods are implemented in the free and open-source R package MultiABEL.

13.
Glycobiology ; 31(2): 82-88, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521004

RESUMO

Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the 16 loci reported previously, 15 were replicated in our study. For the remaining locus (near the KREMEN1 gene), the replication power was low, and hence, replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The 15 replicated loci present a good target for further functional studies. Among these, eight loci contain genes encoding glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4 and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo.


Assuntos
Glicosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Estudos de Coortes , Biologia Computacional , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Polissacarídeos/metabolismo
14.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32897876

RESUMO

ZIP8 is a metal transporter with a role in manganese (Mn) homeostasis. A common genetic variant in ZIP8 (rs13107325; A391T) ranks in the top 10 of pleiotropic SNPs identified in GWAS; A391T has associations with an increased risk of schizophrenia, obesity, Crohn's disease, and reduced blood Mn. Here, we used CRISPR/Cas9-mediated knockin (KI) to generate a mouse model of ZIP8 A391T (Zip8 393T-KI mice). Recapitulating the SNP association with blood Mn, blood Mn was reduced in Zip8 393T-KI mice. There was restricted abnormal tissue Mn homeostasis, with decreases in liver and kidney Mn and a reciprocal increase in biliary Mn, providing in vivo evidence of hypomorphic Zip8 function. Upon challenge in a chemically induced colitis model, male Zip8 393T-KI mice exhibited enhanced disease susceptibility. ZIP8 391-Thr associated with reduced triantennary plasma N-glycan species in a population-based cohort to define a genotype-specific glycophenotype hypothesized to be linked to Mn-dependent glycosyltransferase activity. This glycophenotype was maintained in a cohort of patients with Crohn's disease. These data and the pleiotropic disease associations with ZIP8 391-Thr suggest underappreciated roles of Mn homeostasis in complex human disease.


Assuntos
Proteínas de Transporte de Cátions/genética , Doença de Crohn/genética , Rim/metabolismo , Manganês/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Sulfato de Dextrana/toxicidade , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Homeostase/genética , Humanos , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Manganês/sangue , Camundongos , Polimorfismo de Nucleotídeo Único/genética
15.
Sci Rep ; 10(1): 10486, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591598

RESUMO

Genome-wide association studies have led to a significant progress in identification of genomic loci affecting coronary artery disease (CAD) risk. However, revealing the causal genes responsible for the observed associations is challenging. In the present study, we aimed to prioritize CAD-relevant genes based on cumulative evidence from the published studies and our own study of colocalization between eQTLs and loci associated with CAD using SMR/HEIDI approach. Prior knowledge of candidate genes was extracted from both experimental and in silico studies, employing different prioritization algorithms. Our review systematized information for a total of 51 CAD-associated loci. We pinpointed 37 genes in 36 loci. For 27 genes we infer they are causal for CAD, and for 10 further genes we judge them most likely causal. Colocalization analysis showed that for 18 out of these loci, association with CAD can be explained by changes in gene expression in one or more CAD-relevant tissues. Furthermore, for 8 out of 36 loci, existing evidence suggested additional CAD-associated genes. For the remaining 15 loci, we concluded that evidence for gene prioritization remains inconsistent, insufficient, or absent. Our results provide deeper insights into the genetic etiology of CAD and demonstrate knowledge gaps where further research is warranted.


Assuntos
Doença da Artéria Coronariana/genética , Predisposição Genética para Doença/genética , Simulação por Computador , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Fatores de Risco
16.
Commun Biol ; 3(1): 329, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587327

RESUMO

Chronic musculoskeletal pain affects all aspects of human life. However, mechanisms of its genetic control remain poorly understood. Genetic studies of pain are complicated by the high complexity and heterogeneity of pain phenotypes. Here, we apply principal component analysis to reduce phenotype heterogeneity of chronic musculoskeletal pain at four locations: the back, neck/shoulder, hip, and knee. Using matrices of genetic covariances, we constructed four genetically independent phenotypes (GIPs) with the leading GIP (GIP1) explaining 78.4% of the genetic variance of the analyzed conditions, and GIP2-4 explain progressively less. We identified and replicated five GIP1-associated loci and one GIP2-associated locus and prioritized the most likely causal genes. For GIP1, we showed enrichment with multiple nervous system-related terms and genetic correlations with anthropometric, sociodemographic, psychiatric/personality traits and osteoarthritis. We suggest that GIP1 represents a biopsychological component of chronic musculoskeletal pain, related to physiological and psychological aspects and reflecting pain perception and processing.


Assuntos
Dor Crônica/genética , Doenças Musculoesqueléticas/genética , Adulto , Idoso , Artralgia/genética , Dor nas Costas/genética , Feminino , Estudos de Associação Genética , Loci Gênicos/genética , Pleiotropia Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Cervicalgia/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Locos de Características Quantitativas/genética , Dor de Ombro/genética
17.
Sci Adv ; 6(8): eaax0301, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32128391

RESUMO

Effector functions of immunoglobulin G (IgG) are regulated by the composition of a glycan moiety, thus affecting activity of the immune system. Aberrant glycosylation of IgG has been observed in many diseases, but little is understood about the underlying mechanisms. We performed a genome-wide association study of IgG N-glycosylation (N = 8090) and, using a data-driven network approach, suggested how associated loci form a functional network. We confirmed in vitro that knockdown of IKZF1 decreases the expression of fucosyltransferase FUT8, resulting in increased levels of fucosylated glycans, and suggest that RUNX1 and RUNX3, together with SMARCB1, regulate expression of glycosyltransferase MGAT3. We also show that variants affecting the expression of genes involved in the regulation of glycoenzymes colocalize with variants affecting risk for inflammatory diseases. This study provides new evidence that variation in key transcription factors coupled with regulatory variation in glycogenes modifies IgG glycosylation and has influence on inflammatory diseases.


Assuntos
Regulação da Expressão Gênica , Imunoglobulina G/metabolismo , Inflamação/genética , Inflamação/metabolismo , Algoritmos , Alelos , Biologia Computacional/métodos , Loci Gênicos , Estudo de Associação Genômica Ampla , Glicosilação , Humanos , Imunoglobulina G/imunologia , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Polissacarídeos/metabolismo
18.
Hum Mol Genet ; 28(12): 2062-2077, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31163085

RESUMO

Glycosylation is a common post-translational modification of proteins. Glycosylation is associated with a number of human diseases. Defining genetic factors altering glycosylation may provide a basis for novel approaches to diagnostic and pharmaceutical applications. Here we report a genome-wide association study of the human blood plasma N-glycome composition in up to 3811 people measured by Ultra Performance Liquid Chromatography (UPLC) technology. Starting with the 36 original traits measured by UPLC, we computed an additional 77 derived traits leading to a total of 113 glycan traits. We studied associations between these traits and genetic polymorphisms located on human autosomes. We discovered and replicated 12 loci. This allowed us to demonstrate an overlap in genetic control between total plasma protein and IgG glycosylation. The majority of revealed loci contained genes that encode enzymes directly involved in glycosylation (FUT3/FUT6, FUT8, B3GAT1, ST6GAL1, B4GALT1, ST3GAL4, MGAT3 and MGAT5) and a known regulator of plasma protein fucosylation (HNF1A). However, we also found loci that could possibly reflect other more complex aspects of glycosylation process. Functional genomic annotation suggested the role of several genes including DERL3, CHCHD10, TMEM121, IGH and IKZF1. The hypotheses we generated may serve as a starting point for further functional studies in this research area.


Assuntos
Fucosiltransferases/genética , Glicosiltransferases/genética , Polissacarídeos/sangue , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Fucosiltransferases/sangue , Fucosiltransferases/química , Estudo de Associação Genômica Ampla , Glucuronosiltransferase/sangue , Glucuronosiltransferase/química , Glicosilação , Fator 1-alfa Nuclear de Hepatócito/sangue , Fator 1-alfa Nuclear de Hepatócito/química , Humanos , Imunoglobulina G/metabolismo , Proteínas de Membrana/metabolismo , Polimorfismo Genético , Locos de Características Quantitativas
19.
PLoS Genet ; 15(4): e1008110, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30998689

RESUMO

Varicose veins of lower extremities (VVs) are a common multifactorial vascular disease. Genetic factors underlying VVs development remain largely unknown. Here we report the first large-scale study of VVs performed on a freely available genetic data of 408,455 European-ancestry individuals. We identified the 12 reliably associated loci that explain 13% of the SNP-based heritability, and prioritized the most likely causal genes CASZ1, PIEZO1, PPP3R1, EBF1, STIM2, HFE, GATA2, NFATC2, and SOX9. VVs-associated variants within these loci exhibited pleiotropic effects on several phenotypes including blood pressure/hypertension and blood cell traits. Gene set enrichment analysis revealed gene categories related to abnormal vasculogenesis. Genetic correlation analysis confirmed known epidemiological associations between VVs and deep venous thrombosis, weight, rough labor, and standing job, and found a genetic overlap with multiple traits that have not been previously suspected to share common genetic background with VVs. These traits included educational attainment, fluid intelligence and prospective memory scores, walking pace (negative correlation with VVs), smoking, height, number of operations, pain, and gonarthrosis (positive correlation with VVs). Finally, Mendelian randomization analysis provided evidence for causal effects of plasma levels of MICB and CD209 proteins, and anthropometric traits such as waist and hip circumference, height, weight, and both fat and fat-free mass. Our results provide novel insight into both VVs genetics and etiology. The revealed genes and proteins can be considered as good candidates for follow-up functional studies and might be of interest as potential drug targets.


Assuntos
Suscetibilidade a Doenças , Extremidade Inferior/irrigação sanguínea , Extremidade Inferior/patologia , Varizes/etiologia , Varizes/patologia , Biomarcadores , Biologia Computacional/métodos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
20.
Commun Biol ; 2: 41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729179

RESUMO

Aging populations face diminishing quality of life due to increased disease and morbidity. These challenges call for longevity research to focus on understanding the pathways controlling healthspan. We use the data from the UK Biobank (UKB) cohort and observe that the risks of major chronic diseases increased exponentially and double every eight years, i.e., at a rate compatible with the Gompertz mortality law. Assuming that aging drives the acceleration in morbidity rates, we build a risk model to predict the age at the end of healthspan depending on age, gender, and genetic background. Using the sub-population of 300,447 British individuals as a discovery cohort, we identify 12 loci associated with healthspan at the whole-genome significance level. We find strong genetic correlations between healthspan and all-cause mortality, life-history, and lifestyle traits. We thereby conclude that the healthspan offers a promising new way to interrogate the genetics of human longevity.


Assuntos
Estudos de Associação Genética , Nível de Saúde , Longevidade/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Idoso , Alelos , Análise por Conglomerados , Biologia Computacional , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA