Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511086

RESUMO

AD is the most common neurodegenerative disorder characterized by progressive memory impairment and cognitive deficits. The pathology of AD is still unclear; however, several studies have shown that the aggregation of the Aß peptide in the CNS is an exclusively pathological process involved in AD. Currently, there is no proven medication to cure or prevent the disease progression. Nevertheless, various therapeutic approaches for AD show only relief of symptoms and mostly work on cognitive recovery. However, one of the promising approaches for therapeutic intervention is to use inhibitors for blocking the Aß peptide aggregation process. Recently, herbal phenolic compounds have been shown to have a therapeutic property for treatment of AD due to their multifaceted action. In this study, we investigated the effectiveness of SA, Gn Rb1, and DMyr on inhibiting the aggregation and toxicity of Aß40 and Aß42 using different biochemical and cell-based assays. Our results showed that SA and DMyr inhibit Aß40 and Aß42 fibrillation, seeded aggregation, and toxicity. Gn Rb1 did not have any effect on the aggregation or toxicity induced by Aß40 and Aß42. Moreover, SA and DMyr were able to disaggregate the preformed fibrils. Overall, these compounds may be used alone or synergistically and could be considered as a lead for designing new compounds that could be used as effective treatment of AD and related disorders.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Disfunção Cognitiva , Fragmentos de Peptídeos , Humanos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo
2.
Biomedicines ; 10(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36140215

RESUMO

Fanconi−Bickel Syndrome (FBS) is a rare disorder of carbohydrate metabolism that is characterized by the accumulation of glycogen mainly in the liver. It is inherited in an autosomal recessive manner due to mutations in the SLC2A2 gene. SLC2A2 encodes for the glucose transporter GLUT2 and is expressed in tissues that are involved in glucose homeostasis. The molecular mechanisms of dysglycemia in FBS are still not clearly understood. In this study, we report two cases of FBS with classical phenotypes of FBS associated with dysglycemia. Genomic DNA was extracted and analyzed by whole-genome and Sanger sequencing, and patient PBMCs were used for molecular analysis. One patient had an exonic SLC2A2 mutation (c.1093C>T in exon 9, R365X), while the other patient had a novel intronic SLC2A2 mutation (c.613-7T>G). Surprisingly, the exonic mutation resulted in the overexpression of dysfunctional GLUT2, resulting in the dysregulated expression of other glucose transporters. The intronic mutation did not affect the coding sequence of GLUT2, its expression, or glucose transport activity. However, it was associated with the expression of miRNAs correlated with type 1 diabetes mellitus, with a particular significant overexpression of hsa-miR-29a-3p implicated in insulin production and secretion. Our findings suggest that SLC2A2 mutations cause dysglycemia in FBS either by a direct effect on GLUT2 expression and/or activity or, indirectly, by the dysregulated expression of miRNAs implicated in glucose homeostasis.

3.
Front Endocrinol (Lausanne) ; 13: 841788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663312

RESUMO

Fanconi-Bickel Syndrome (FBS) is a rare disorder of carbohydrate metabolism that is characterized mainly by the accumulation of glycogen in the liver and kidney. It is inherited as an autosomal recessive disorder caused by mutations in the SLC2A2 gene, which encodes for GLUT2. Patients with FBS have dysglycemia but the molecular mechanisms of dysglycemia are still not clearly understood. Therefore, we aimed to understand the underlying molecular mechanisms of dysglycemia in a patient with FBS. Genomic DNA was isolated from a peripheral blood sample and analyzed by whole genome and Sanger sequencing. CRISPR-Cas9 was used to introduce a mutation that mimics the patient's mutation in a human kidney cell line expressing GLUT2 (HEK293T). Mutant cells were used for molecular analysis to investigate the effects of the mutation on the expression and function of GLUT2, as well as the expression of other genes implicated in dysglycemia. The patient was found to have a homozygous nonsense mutation (c.901C>T, R301X) in the SLC2A2 gene. CRISPR-Cas9 successfully mimicked the patient's mutation in HEK293T cells. The mutant cells showed overexpression of a dysfunctional GLUT2 protein, resulting in reduced glucose release activity and enhanced intracellular glucose accumulation. In addition, other glucose transporters (SGLT1 and SGLT2 in the kidney) were found to be induced in the mutant cells. These findings suggest the last loops (loops 9-12) of GLUT2 are essential for glucose transport activity and indicate that GLUT2 dysfunction is associated with dysglycemia in FBS.


Assuntos
Doenças do Sistema Endócrino , Síndrome de Fanconi , Síndrome de Fanconi/genética , Glucose/metabolismo , Células HEK293 , Homozigoto , Humanos , Mutação
4.
Biology (Basel) ; 11(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35453810

RESUMO

The scope of this study is to show that DM in a LRBA-deficient patient with a stop codon mutation (c.3999 G > A) was not mediated through autoimmunity. We have evaluated the ability of the proband's T cells to be activated by assessing their CTLA-4 expression. A nonsignificant difference was seen in the CTLA-4 expression on CD3+ T cells compared to the healthy control at basal level and after stimulation with PMA/ionomycin. Blood transcriptomic analysis have shown a remarkable increase in abundance of transcripts related to CD71+ erythroid cells. There were no differences in the expression of modules related to autoimmunity diseases between the proband and pooled healthy controls. In addition, our novel findings show that siRNA knockdown of LRBA in mouse pancreatic ß-cells leads reduced cellular proinsulin, insulin and consequently insulin secretion, without change in cell viability in cultured MIN6 cells.

5.
Sci Rep ; 11(1): 18887, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556755

RESUMO

To describe the clinical features, epidemiology, autoantibody status, HLA haplotypes and genetic mechanisms of type 1 diabetes mellitus (T1DM). Patients (0-18 years) with diabetes were recruited. Clinical data was collected, autoantibodies and c-peptide were measured. Whole Genome Sequencing was performed. Genomic data analysis was compared with the known genes linked with T1DM and HLA alleles were studied. 1096 patients had one or more antibody positivity. The incidence of T1DM in 2020 was 38.05 per 100,000 children and prevalence was 249.73. GADA was the most common autoantibody followed by IAA. Variants in GSTCD, SKAP2, SLC9B1, BANK1 were most prevalent. An association of HLA haplotypes DQA1*03:01:01G (OR = 2.46, p value = 0.011) and DQB1*03:02:01G (OR = 2.43, p value = 0.022) was identified. The incidence of T1DM in Qatar is the fourth highest in the world, IA2 autoantibody was the most specific with some patients only having ZnT8 or IA2 autoantibodies thus underlining the necessity of profiling all 4 autoantibodies. The genes associated with T1DM in the Arab population were different from those that are common in the Caucasian population. HLA-DQ was enriched in the Qatari patients suggesting that it can be considered a major risk factor at an early age.


Assuntos
Autoanticorpos/sangue , Diabetes Mellitus Tipo 1 , Predisposição Genética para Doença , Antígenos de Histocompatibilidade/genética , Adolescente , Alelos , Autoanticorpos/imunologia , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Haplótipos , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Prevalência , Catar/epidemiologia
6.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32877990

RESUMO

Accumulation of glycogen in the kidney and liver is the main feature of Fanconi-Bickel Syndrome (FBS), a rare disorder of carbohydrate metabolism inherited in an autosomal recessive manner due to SLC2A2 gene mutations. Missense, nonsense, frame-shift (fs), in-frame indels, splice site, and compound heterozygous variants have all been identified in SLC2A2 gene of FBS cases. Approximately 144 FBS cases with 70 different SLC2A2 gene variants have been reported so far. SLC2A2 encodes for glucose transporter 2 (GLUT2) a low affinity facilitative transporter of glucose mainly expressed in tissues playing important roles in glucose homeostasis, such as renal tubular cells, enterocytes, pancreatic ß-cells, hepatocytes and discrete regions of the brain. Dysfunctional mutations and decreased GLUT2 expression leads to dysglycaemia (fasting hypoglycemia, postprandial hyperglycemia, glucose intolerance, and rarely diabetes mellitus), hepatomegaly, galactose intolerance, rickets, and poor growth. The molecular mechanisms of dysglycaemia in FBS are still not clearly understood. In this review, we discuss the physiological roles of GLUT2 and the pathophysiology of mutants, highlight all of the previously reported SLC2A2 mutations associated with dysglycaemia, and review the potential molecular mechanisms leading to dysglycaemia and diabetes mellitus in FBS patients.


Assuntos
Síndrome de Fanconi/complicações , Intolerância à Glucose/etiologia , Transportador de Glucose Tipo 2/genética , Mutação , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...