Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol Inform ; 14: 100328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693862

RESUMO

Pathologists need to compare histopathological images of normal and diseased tissues between different samples, cases, and species. We have designed an interactive system, termed Comparative Pathology Workbench (CPW), which allows direct and dynamic comparison of images at a variety of magnifications, selected regions of interest, as well as the results of image analysis or other data analyses such as scRNA-seq. This allows pathologists to indicate key diagnostic features, with a mechanism to allow discussion threads amongst expert groups of pathologists and other disciplines. The data and associated discussions can be accessed online from anywhere in the world. The Comparative Pathology Workbench (CPW) is a web-browser-based visual analytics platform providing shared access to an interactive "spreadsheet" style presentation of image and associated analysis data. The CPW provides a grid layout of rows and columns so that images that correspond to matching data can be organised in the form of an image-enabled "spreadsheet". An individual workbench can be shared with other users with read-only or full edit access as required. In addition, each workbench element or the whole bench itself has an associated discussion thread to allow collaborative analysis and consensual interpretation of the data. The CPW is a Django-based web-application that hosts the workbench data, manages users, and user-preferences. All image data are hosted by other resource applications such as OMERO or the Digital Slide Archive. Further resources can be added as required. The discussion threads are managed using WordPress and include additional graphical and image data. The CPW has been developed to allow integration of image analysis outputs from systems such as QuPath or ImageJ. All software is open-source and available from a GitHub repository.

2.
BMC Med Inform Decis Mak ; 23(1): 36, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36793076

RESUMO

BACKGROUND: The Human Cell Atlas resource will deliver single cell transcriptome data spatially organised in terms of gross anatomy, tissue location and with images of cellular histology. This will enable the application of bioinformatics analysis, machine learning and data mining revealing an atlas of cell types, sub-types, varying states and ultimately cellular changes related to disease conditions. To further develop the understanding of specific pathological and histopathological phenotypes with their spatial relationships and dependencies, a more sophisticated spatial descriptive framework is required to enable integration and analysis in spatial terms. METHODS: We describe a conceptual coordinate model for the Gut Cell Atlas (small and large intestines). Here, we focus on a Gut Linear Model (1-dimensional representation based on the centreline of the gut) that represents the location semantics as typically used by clinicians and pathologists when describing location in the gut. This knowledge representation is based on a set of standardised gut anatomy ontology terms describing regions in situ, such as ileum or transverse colon, and landmarks, such as ileo-caecal valve or hepatic flexure, together with relative or absolute distance measures. We show how locations in the 1D model can be mapped to and from points and regions in both a 2D model and 3D models, such as a patient's CT scan where the gut has been segmented. RESULTS: The outputs of this work include 1D, 2D and 3D models of the human gut, delivered through publicly accessible Json and image files. We also illustrate the mappings between models using a demonstrator tool that allows the user to explore the anatomical space of the gut. All data and software is fully open-source and available online. CONCLUSIONS: Small and large intestines have a natural "gut coordinate" system best represented as a 1D centreline through the gut tube, reflecting functional differences. Such a 1D centreline model with landmarks, visualised using viewer software allows interoperable translation to both a 2D anatomogram model and multiple 3D models of the intestines. This permits users to accurately locate samples for data comparison.


Assuntos
Imageamento Tridimensional , Software , Humanos , Imageamento Tridimensional/métodos
3.
Comput Biol Chem ; 95: 107589, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34673384

RESUMO

One of the main research topics in computational biology is Gene Regulatory Network (GRN) reconstruction that refers to inferring the relationships between genes involved in regulating cell conditions in response to internal or external stimuli. To this end, most computational methods use only transcriptional gene expression data to reconstruct gene regulatory networks, but recent studies suggest that gene expression data must be integrated with other types of data to obtain more accurate models predicting real relationships between genes. In this study, a diffusion-based method is enhanced to integrate biological data of network types besides structural prior knowledge. The Random Walk with Restart algorithm (RWR) with an emphasis on hub nodes is executed separately on each network, and then jointly optimizes low-dimensional feature vectors for network nodes by diffusion component analysis. Next, these feature vectors are used to infer gene regulatory networks. Fourteen centrality measures are studied for the detection of hub nodes to be used in the RWR algorithm, and the best centrality measure having the greatest effect on the improvement of gene network inference is selected. A case study for the Saccharomyces cerevisiae and E. coli networks shows that using the proposed features in comparison with gene expression data alone results in 0.02-0.08 units improvement in Area Under Receiver Characteristic Operator (AUROC) criteria across different gene regulatory network inference methods. Furthermore, the proposed method was applied to the esophageal cancer data to infer its gene regulatory network. The proposed framework substantially improves accuracy and scalability of GRN inference. The fused features and the best centrality measure detected can be used to provide functional insights about genes or proteins in various biological applications. Moreover, it can be served as a general framework for network data and structural data integration and analysis problems in various scientific disciplines including biology.


Assuntos
Biologia Computacional , Escherichia coli/genética , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Algoritmos
4.
Development ; 138(13): 2845-53, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21652655

RESUMO

The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is an international consortium working to generate gene expression data and transgenic mice. GUDMAP includes data from large-scale in situ hybridisation screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of the developing mouse genitourinary (GU) system. These expression data are annotated using a high-resolution anatomy ontology specific to the developing murine GU system. GUDMAP data are freely accessible at www.gudmap.org via easy-to-use interfaces. This curated, high-resolution dataset serves as a powerful resource for biologists, clinicians and bioinformaticians interested in the developing urogenital system. This paper gives examples of how the data have been used to address problems in developmental biology and provides a primer for those wishing to use the database in their own research.


Assuntos
Bases de Dados Genéticas , Internet , Sistema Urogenital/metabolismo , Animais , Humanos , Camundongos , Software , Sistema Urogenital/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...