Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(5): 2006-2013, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29303275

RESUMO

Colloidal particles at complex fluid interfaces and within films assemble to form ordered structures with high degrees of symmetry via interactions that include capillarity, elasticity, and other fields like electrostatic charge. Here we study microparticle interactions within free-standing smectic-A films, in which the elasticity arising from the director field distortion and capillary interactions arising from interface deformation compete to direct the assembly of motile particles. New colloidal assemblies and patterns, ranging from 1D chains to 2D aggregates, sensitive to the initial wetting conditions of particles at the smectic film, are reported. This work paves the way to exploiting LC interfaces as a means to direct spontaneously formed, reconfigurable, and optically active materials.

2.
Soft Matter ; 14(5): 861-862, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29350228

RESUMO

Correction for 'Films of bacteria at interfaces: three stages of behaviour' by Liana Vaccari et al., Soft Matter, 2015, 11, 6062-6074.

3.
Langmuir ; 33(2): 600-610, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28036186

RESUMO

Inspired by proteins that generate membrane curvature, sense the underlying membrane geometry, and migrate driven by curvature gradients, we explore the question: Can colloids, adhered to lipid bilayers, also sense and respond to membrane geometry? We report the migration of Janus microparticles adhered to giant unilamellar vesicles elongated to present spatially varying curvatures. In our experiments, colloids migrate only when the membranes are tense, suggesting that they migrate to minimize membrane area. By determining the energy dissipated along a trajectory, the energy field is inferred to depend on the local deviatoric curvature, like curvature driven capillary migration on interfaces between immiscible fluids. In this latter system, energy gradients are larger, so colloids move deterministically, whereas the paths traced by colloids on vesicles have significant fluctuations. By addressing the role of Brownian motion, we show that the observed migration is analogous to curvature driven capillary migration, with membrane tension playing the role of interfacial tension. Since this motion is mediated by membrane shape, it can be turned on and off by dynamically deforming the vesicle. While particle-particle interactions on lipid membranes have been considered in many contributions, we report here an exciting and previously unexplored modality to actively direct the migration of colloids to desired locations on lipid bilayers.


Assuntos
Coloides/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Lipossomas Unilamelares/química
4.
Philos Trans A Math Phys Eng Sci ; 374(2072)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298434

RESUMO

Control over the spatial arrangement of colloids in soft matter hosts implies control over a wide variety of properties, ranging from the system's rheology, optics, and catalytic activity. In directed assembly, colloids are typically manipulated using external fields to form well-defined structures at given locations. We have been developing alternative strategies based on fields that arise when a colloid is placed within soft matter to form an inclusion that generates a potential field. Such potential fields allow particles to interact with each other. If the soft matter host is deformed in some way, the potential allows the particles to interact with the global system distortion. One important example is capillary assembly of colloids on curved fluid interfaces. Upon attaching, the particle distorts that interface, with an associated energy field, given by the product of its interfacial area and the surface tension. The particle's capillary energy depends on the local interface curvature. We explore this coupling in experiment and theory. There are important analogies in liquid crystals. Colloids in liquid crystals elicit an elastic energy response. When director fields are moulded by confinement, the imposed elastic energy field can couple to that of the colloid to define particle paths and sites for assembly. By improving our understanding of these and related systems, we seek to develop new, parallelizable routes for particle assembly to form reconfigurable systems in soft matter that go far beyond the usual close-packed colloidal structures.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.

5.
ACS Nano ; 10(6): 6338-44, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27227507

RESUMO

Bijels are a class of soft materials with potential for application in diverse areas including healthcare, food, energy, and reaction engineering due to their unique structural, mechanical, and transport properties. To realize their potential, means to fabricate, characterize, and manipulate bijel mechanics are needed. We recently developed a method based on solvent transfer-induced phase separation (STRIPS) that enables continuous fabrication of hierarchically structured bijel fibers from a broad array of constituent fluids and nanoparticles using a microfluidic platform. Here, we introduce an in situ technique to characterize bijel fiber mechanics at initial and final stages of the formation process within a microfluidics device. By manipulation of the hydrodynamic stresses applied to the fiber, the fiber is placed under tension until it breaks into segments. Analysis of the stress field allows fracture strength to be inferred; fracture strengths can be as high as several thousand Pa, depending on nanoparticle content. These findings broaden the potential for the use of STRIPS bijels in applications with different mechanical demands. Moreover, our in situ mechanical characterization method could potentially enable determination of properties of other soft fibrous materials made of hydrogels, capillary suspensions, colloidal gels, or high internal phase emulsions.

6.
Soft Matter ; 11(30): 6062-74, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26135879

RESUMO

We report an investigation of the formation of films by bacteria at an oil-water interface using a combination of particle tracking and pendant drop elastometry. The films display a remarkably varied series of dynamical and mechanical properties as they evolve over the course of minutes to hours following the creation of an initially pristine interface. At the earliest stage of formation, which we interrogate using dispersions of colloidal probes, the interface is populated with motile bacteria. Interactions with the bacteria dominate the colloidal motion, and the interface displays canonical features of active matter in a quasi-two-dimensional context. This active stage gives way to a viscoelastic transition, presumably driven by the accumulation at the interface of polysaccharides and surfactants produced by the bacteria, which instill the interface with the hallmarks of soft glassy rheology that we characterize with microrheology. Eventually, the viscoelastic film becomes fully elastic with the capability to support wrinkling upon compression, and we investigate this final stage with the pendant drop measurements. We characterize quantitatively the dynamic and mechanical properties of the films during each of these three stages - active, viscoelastic, and elastic - and comment on their possible significance for the interfacial bacterial colony. This work also brings to the forefront the important role that interfacial mechanics may play in bacterial suspensions with free surfaces.


Assuntos
Bactérias/química , Biofilmes/crescimento & desenvolvimento , Óleos/química , Água/química , Reologia , Propriedades de Superfície
7.
Soft Matter ; 11(34): 6768-79, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26154075

RESUMO

We address the question: how does capillarity propel microspheres along curvature gradients? For a particle on a fluid interface, there are two conditions that can apply at the three phase contact line: either the contact line adopts an equilibrium contact angle, or it can be pinned by kinetic trapping, e.g. at chemical heterogeneities, asperities, or other pinning sites on the particle surface. We formulate the curvature capillary energy for both scenarios for particles smaller than the capillary length and far from any pinning boundaries. The scale and range of the distortion made by the particle are set by the particle radius; we use singular perturbation methods to find the distortions and to rigorously evaluate the associated capillary energies. For particles with equilibrium contact angles, contrary to the literature, we find that the capillary energy is negligible, with the first contribution bounded to fourth order in the product of the particle radius and the deviatoric curvature of the host interface. For pinned contact lines, we find curvature capillary energies that are finite, with a functional form investigated previously by us for disks and microcylinders on curved interfaces. In experiments, we show microspheres migrate along deterministic trajectories toward regions of maximum deviatoric curvature with curvature capillary energies ranging from 6 × 10(3)-5 × 10(4)kBT. These data agree with the curvature capillary energy for the case of pinned contact lines. The underlying physics of this migration is a coupling of the interface deviatoric curvature with the quadrupolar mode of nanometric disturbances in the interface owing to the particle's contact line undulations. This work is an example of the major implications of nanometric roughness and contact line pinning for colloidal dynamics.


Assuntos
Microesferas , Movimento (Física) , Poliestirenos
8.
J Colloid Interface Sci ; 449: 436-42, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25618486

RESUMO

The capillary energy landscape for particles on curved fluid interfaces is strongly influenced by the particle wetting conditions. Contact line pinning has now been widely reported for colloidal particles, but its implications in capillary interactions have not been addressed. Here, we present experiment and analysis for disks with pinned contact lines on curved fluid interfaces. In experiment, we study microdisk migration on a host interface with zero mean curvature; the microdisks have contact lines pinned at their sharp edges and are sufficiently small that gravitational effects are negligible. The disks migrate away from planar regions toward regions of steep curvature with capillary energies inferred from the dissipation along particle trajectories which are linear in the deviatoric curvature. We derive the curvature capillary energy for an interface with arbitrary curvature, and discuss each contribution to the expression. By adsorbing to a curved interface, a particle eliminates a patch of fluid interface and perturbs the surrounding interface shape. Analysis predicts that perfectly smooth, circular disks do not migrate, and that nanometric deviations from a planar circular, contact line, like those around a weakly roughened planar disk, will drive migration with linear dependence on deviatoric curvature, in agreement with experiment.

9.
Phys Rev Lett ; 111(18): 184501, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24237522

RESUMO

Chemical-mechanical transduction mechanisms which can actuate the movement of colloids through liquids are highly sought after as engines to propel miniaturized micro- and nanobots. One mechanism involves harnessing the long-range van der Waals attractive forces between the colloid and solute molecules dissolved in the liquid around the particle. If a concentration gradient of this solute is applied across the particle, then the imbalance in the van der Waals attraction drives the particle towards the higher concentration of solute. We present a molecular dynamics simulation using Lennard-Jones interactions between molecules of the solvent, solute, and colloid cluster which include short-range repulsive and long-range attractive potentials. The simulations demonstrate that a solute gradient can propel nanosized colloids, and that the velocity decreases with the colloid size. The solute-colloid short-range repulsive interactions are observed to be restricted to a region of specifically adsorbed solutes on the particle surface which are symmetrically adsorbed and do not contribute to the motion. The size of this region provides a cutoff for a continuum level description of the motion, and with this cutoff, continuum calculations are in excellent agreement with the molecular dynamics simulation results, completing a description of the propulsion from the nano- to the microscale.


Assuntos
Coloides/química , Modelos Químicos , Nanopartículas/química , Simulação de Dinâmica Molecular , Soluções/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...