Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Front Radiol ; 4: 1335349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654762

RESUMO

Background: Chronic pulmonary embolism (PE) may result in pulmonary hypertension (CTEPH). Automated CT pulmonary angiography (CTPA) interpretation using artificial intelligence (AI) tools has the potential for improving diagnostic accuracy, reducing delays to diagnosis and yielding novel information of clinical value in CTEPH. This systematic review aimed to identify and appraise existing studies presenting AI tools for CTPA in the context of chronic PE and CTEPH. Methods: MEDLINE and EMBASE databases were searched on 11 September 2023. Journal publications presenting AI tools for CTPA in patients with chronic PE or CTEPH were eligible for inclusion. Information about model design, training and testing was extracted. Study quality was assessed using compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Results: Five studies were eligible for inclusion, all of which presented deep learning AI models to evaluate PE. First study evaluated the lung parenchymal changes in chronic PE and two studies used an AI model to classify PE, with none directly assessing the pulmonary arteries. In addition, a separate study developed a CNN tool to distinguish chronic PE using 2D maximum intensity projection reconstructions. While another study assessed a novel automated approach to quantify hypoperfusion to help in the severity assessment of CTEPH. While descriptions of model design and training were reliable, descriptions of the datasets used in training and testing were more inconsistent. Conclusion: In contrast to AI tools for evaluation of acute PE, there has been limited investigation of AI-based approaches to characterising chronic PE and CTEPH on CTPA. Existing studies are limited by inconsistent reporting of the data used to train and test their models. This systematic review highlights an area of potential expansion for the field of AI in medical image interpretation.There is limited knowledge of A systematic review of artificial intelligence tools for chronic pulmonary embolism in CT. This systematic review provides an assessment on research that examined deep learning algorithms in detecting CTEPH on CTPA images, the number of studies assessing the utility of deep learning on CTPA in CTEPH was unclear and should be highlighted.

2.
Radiology ; 310(2): e231718, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319169

RESUMO

Background There is clinical need to better quantify lung disease severity in pulmonary hypertension (PH), particularly in idiopathic pulmonary arterial hypertension (IPAH) and PH associated with lung disease (PH-LD). Purpose To quantify fibrosis on CT pulmonary angiograms using an artificial intelligence (AI) model and to assess whether this approach can be used in combination with radiologic scoring to predict survival. Materials and Methods This retrospective multicenter study included adult patients with IPAH or PH-LD who underwent incidental CT imaging between February 2007 and January 2019. Patients were divided into training and test cohorts based on the institution of imaging. The test cohort included imaging examinations performed in 37 external hospitals. Fibrosis was quantified using an established AI model and radiologically scored by radiologists. Multivariable Cox regression adjusted for age, sex, World Health Organization functional class, pulmonary vascular resistance, and diffusing capacity of the lungs for carbon monoxide was performed. The performance of predictive models with or without AI-quantified fibrosis was assessed using the concordance index (C index). Results The training and test cohorts included 275 (median age, 68 years [IQR, 60-75 years]; 128 women) and 246 (median age, 65 years [IQR, 51-72 years]; 142 women) patients, respectively. Multivariable analysis showed that AI-quantified percentage of fibrosis was associated with an increased risk of patient mortality in the training cohort (hazard ratio, 1.01 [95% CI: 1.00, 1.02]; P = .04). This finding was validated in the external test cohort (C index, 0.76). The model combining AI-quantified fibrosis and radiologic scoring showed improved performance for predicting patient mortality compared with a model including radiologic scoring alone (C index, 0.67 vs 0.61; P < .001). Conclusion Percentage of lung fibrosis quantified on CT pulmonary angiograms by an AI model was associated with increased risk of mortality and showed improved performance for predicting patient survival when used in combination with radiologic severity scoring compared with radiologic scoring alone. © RSNA, 2024 Supplemental material is available for this article.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Radiologia , Adulto , Idoso , Feminino , Humanos , Inteligência Artificial , Hipertensão Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Estudos Retrospectivos
3.
Front Cardiovasc Med ; 11: 1323461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317865

RESUMO

Background: Segmentation of cardiac structures is an important step in evaluation of the heart on imaging. There has been growing interest in how artificial intelligence (AI) methods-particularly deep learning (DL)-can be used to automate this process. Existing AI approaches to cardiac segmentation have mostly focused on cardiac MRI. This systematic review aimed to appraise the performance and quality of supervised DL tools for the segmentation of cardiac structures on CT. Methods: Embase and Medline databases were searched to identify related studies from January 1, 2013 to December 4, 2023. Original research studies published in peer-reviewed journals after January 1, 2013 were eligible for inclusion if they presented supervised DL-based tools for the segmentation of cardiac structures and non-coronary great vessels on CT. The data extracted from eligible studies included information about cardiac structure(s) being segmented, study location, DL architectures and reported performance metrics such as the Dice similarity coefficient (DSC). The quality of the included studies was assessed using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Results: 18 studies published after 2020 were included. The DSC scores median achieved for the most commonly segmented structures were left atrium (0.88, IQR 0.83-0.91), left ventricle (0.91, IQR 0.89-0.94), left ventricle myocardium (0.83, IQR 0.82-0.92), right atrium (0.88, IQR 0.83-0.90), right ventricle (0.91, IQR 0.85-0.92), and pulmonary artery (0.92, IQR 0.87-0.93). Compliance of studies with CLAIM was variable. In particular, only 58% of studies showed compliance with dataset description criteria and most of the studies did not test or validate their models on external data (81%). Conclusion: Supervised DL has been applied to the segmentation of various cardiac structures on CT. Most showed similar performance as measured by DSC values. Existing studies have been limited by the size and nature of the training datasets, inconsistent descriptions of ground truth annotations and lack of testing in external data or clinical settings. Systematic Review Registration: [www.crd.york.ac.uk/prospero/], PROSPERO [CRD42023431113].

4.
Front Cardiovasc Med ; 11: 1279298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374997

RESUMO

Introduction: Cardiac magnetic resonance (CMR) is of diagnostic and prognostic value in a range of cardiopulmonary conditions. Current methods for evaluating CMR studies are laborious and time-consuming, contributing to delays for patients. As the demand for CMR increases, there is a growing need to automate this process. The application of artificial intelligence (AI) to CMR is promising, but the evaluation of these tools in clinical practice has been limited. This study assessed the clinical viability of an automatic tool for measuring cardiac volumes on CMR. Methods: Consecutive patients who underwent CMR for any indication between January 2022 and October 2022 at a single tertiary centre were included prospectively. For each case, short-axis CMR images were segmented by the AI tool and manually to yield volume, mass and ejection fraction measurements for both ventricles. Automated and manual measurements were compared for agreement and the quality of the automated contours was assessed visually by cardiac radiologists. Results: 462 CMR studies were included. No statistically significant difference was demonstrated between any automated and manual measurements (p > 0.05; independent T-test). Intraclass correlation coefficient and Bland-Altman analysis showed excellent agreement across all metrics (ICC > 0.85). The automated contours were evaluated visually in 251 cases, with agreement or minor disagreement in 229 cases (91.2%) and failed segmentation in only a single case (0.4%). The AI tool was able to provide automated contours in under 90 s. Conclusions: Automated segmentation of both ventricles on CMR by an automatic tool shows excellent agreement with manual segmentation performed by CMR experts in a retrospective real-world clinical cohort. Implementation of the tool could improve the efficiency of CMR reporting and reduce delays between imaging and diagnosis.

5.
Eur Radiol ; 34(4): 2727-2737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37775589

RESUMO

OBJECTIVES: There is a need for CT pulmonary angiography (CTPA) lung segmentation models. Clinical translation requires radiological evaluation of model outputs, understanding of limitations, and identification of failure points. This multicentre study aims to develop an accurate CTPA lung segmentation model, with evaluation of outputs in two diverse patient cohorts with pulmonary hypertension (PH) and interstitial lung disease (ILD). METHODS: This retrospective study develops an nnU-Net-based segmentation model using data from two specialist centres (UK and USA). Model was trained (n = 37), tested (n = 12), and clinically evaluated (n = 176) on a diverse 'real-world' cohort of 225 PH patients with volumetric CTPAs. Dice score coefficient (DSC) and normalised surface distance (NSD) were used for testing. Clinical evaluation of outputs was performed by two radiologists who assessed clinical significance of errors. External validation was performed on heterogenous contrast and non-contrast scans from 28 ILD patients. RESULTS: A total of 225 PH and 28 ILD patients with diverse demographic and clinical characteristics were evaluated. Mean accuracy, DSC, and NSD scores were 0.998 (95% CI 0.9976, 0.9989), 0.990 (0.9840, 0.9962), and 0.983 (0.9686, 0.9972) respectively. There were no segmentation failures. On radiological review, 82% and 71% of internal and external cases respectively had no errors. Eighteen percent and 25% respectively had clinically insignificant errors. Peripheral atelectasis and consolidation were common causes for suboptimal segmentation. One external case (0.5%) with patulous oesophagus had a clinically significant error. CONCLUSION: State-of-the-art CTPA lung segmentation model provides accurate outputs with minimal clinical errors on evaluation across two diverse cohorts with PH and ILD. CLINICAL RELEVANCE: Clinical translation of artificial intelligence models requires radiological review and understanding of model limitations. This study develops an externally validated state-of-the-art model with robust radiological review. Intended clinical use is in techniques such as lung volume or parenchymal disease quantification. KEY POINTS: • Accurate, externally validated CT pulmonary angiography (CTPA) lung segmentation model tested in two large heterogeneous clinical cohorts (pulmonary hypertension and interstitial lung disease). • No segmentation failures and robust review of model outputs by radiologists found 1 (0.5%) clinically significant segmentation error. • Intended clinical use of this model is a necessary step in techniques such as lung volume, parenchymal disease quantification, or pulmonary vessel analysis.


Assuntos
Aprendizado Profundo , Hipertensão Pulmonar , Doenças Pulmonares Intersticiais , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Inteligência Artificial , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Pulmão
6.
BMJ Open ; 13(11): e077348, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940155

RESUMO

OBJECTIVES: Early identification of lung cancer on chest radiographs improves patient outcomes. Artificial intelligence (AI) tools may increase diagnostic accuracy and streamline this pathway. This study evaluated the performance of commercially available AI-based software trained to identify cancerous lung nodules on chest radiographs. DESIGN: This retrospective study included primary care chest radiographs acquired in a UK centre. The software evaluated each radiograph independently and outputs were compared with two reference standards: (1) the radiologist report and (2) the diagnosis of cancer by multidisciplinary team decision. Failure analysis was performed by interrogating the software marker locations on radiographs. PARTICIPANTS: 5722 consecutive chest radiographs were included from 5592 patients (median age 59 years, 53.8% women, 1.6% prevalence of cancer). RESULTS: Compared with radiologist reports for nodule detection, the software demonstrated sensitivity 54.5% (95% CI 44.2% to 64.4%), specificity 83.2% (82.2% to 84.1%), positive predictive value (PPV) 5.5% (4.6% to 6.6%) and negative predictive value (NPV) 99.0% (98.8% to 99.2%). Compared with cancer diagnosis, the software demonstrated sensitivity 60.9% (50.1% to 70.9%), specificity 83.3% (82.3% to 84.2%), PPV 5.6% (4.8% to 6.6%) and NPV 99.2% (99.0% to 99.4%). Normal or variant anatomy was misidentified as an abnormality in 69.9% of the 943 false positive cases. CONCLUSIONS: The software demonstrated considerable underperformance in this real-world patient cohort. Failure analysis suggested a lack of generalisability in the training and testing datasets as a potential factor. The low PPV carries the risk of over-investigation and limits the translation of the software to clinical practice. Our findings highlight the importance of training and testing software in representative datasets, with broader implications for the implementation of AI tools in imaging.


Assuntos
Neoplasias Pulmonares , Lesões Pré-Cancerosas , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Inteligência Artificial , Estudos Retrospectivos , Sensibilidade e Especificidade , Software , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão , Reino Unido , Radiografia Torácica/métodos
7.
Zookeys ; 1180: 67-79, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744947

RESUMO

A new genus of the braconid subfamily Cardiochilinae, Ophiclypeusgen. nov., is described and illustrated based on three new species: O.chiangmaiensis Kang, sp. nov. type species (type locality: Chiang Mai, Thailand), O.dvaravati Ghafouri Moghaddam, Quicke & Butcher, sp. nov. (type locality: Saraburi, Thailand), and O.junyani Kang, sp. nov. (type locality: Dalin, Taiwan). We provide morphological diagnostic characters to separate the new genus from other cardiochiline genera. A modified key couplet (couplet 5) and a new key couplet (couplet 16) are provided with detailed images for Dangerfield's key to the world cardiochiline genera to facilitate recognition of Ophiclypeusgen. nov.

8.
Eur Respir J ; 62(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414419

RESUMO

BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard technique to assess biventricular volumes and function, and is increasingly being considered as an end-point in clinical studies. Currently, with the exception of right ventricular (RV) stroke volume and RV end-diastolic volume, there is only limited data on minimally important differences (MIDs) reported for CMR metrics. Our study aimed to identify MIDs for CMR metrics based on US Food and Drug Administration recommendations for a clinical outcome measure that should reflect how a patient "feels, functions or survives". METHODS: Consecutive treatment-naïve patients with pulmonary arterial hypertension (PAH) between 2010 and 2022 who had two CMR scans (at baseline prior to treatment and 12 months following treatment) were identified from the ASPIRE registry. All patients were followed up for 1 additional year after the second scan. For both scans, cardiac measurements were obtained from a validated fully automated segmentation tool. The MID in CMR metrics was determined using two distribution-based (0.5sd and minimal detectable change) and two anchor-based (change difference and generalised linear model regression) methods benchmarked to how a patient "feels" (emPHasis-10 quality of life questionnaire), "functions" (incremental shuttle walk test) or "survives" for 1-year mortality to changes in CMR measurements. RESULTS: 254 patients with PAH were included (mean±sd age 53±16 years, 79% female and 66% categorised as intermediate risk based on the 2022 European Society of Cardiology/European Respiratory Society risk score). We identified a 5% absolute increase in RV ejection fraction and a 17 mL decrease in RV end-diastolic or end-systolic volumes as the MIDs for improvement. Conversely, a 5% decrease in RV ejection fraction and a 10 mL increase in RV volumes were associated with worsening. CONCLUSIONS: This study establishes clinically relevant CMR MIDs for how a patient "feels, functions or survives" in response to PAH treatment. These findings provide further support for the use of CMR as a clinically relevant clinical outcome measure and will aid trial size calculations for studies using CMR.


Plain language summaryPulmonary arterial hypertension (PAH) is a disease of the vessels of the lung that causes their narrowing and stiffening. As a result, the heart pumping blood into these diseased lung vessels has to work harder and eventually gets worn out. PAH can affect patients' ability to function in daily activities and impact their quality of life. It also reduces their life expectancy dramatically. Patients are, therefore, often monitored and undergo several investigations to adapt treatment according to their situation. These investigations include a survey of how a patient feels (the emPHasis-10 questionnaire), functions (walking test) and how well the heart is coping with the disease (MRI of the heart). Until now, it is unclear how changes on MRI of the heart reflect changes in how a patient feels and functions. Our study identified patients that had the emPHasis-10 questionnaire, walking test and MRI of the heart at both the time of PAH diagnosis and one year later. This allowed us to compare how the changes in the different tests relate to each other. And because previous research identified thresholds for important changes in the emPHasis-10 questionnaire and the walking tests, we were able to use these tests as a benchmark for changes in the MRI of the heart. Our study identified thresholds for change on heart MRI that might indicate whether a patient has improved or worsened. This finding might have implications for how patients are monitored in clinical practice and future research on PAH treatments.


Assuntos
Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Qualidade de Vida , Imageamento por Ressonância Magnética/métodos , Volume Sistólico/fisiologia , Hipertensão Pulmonar Primária Familiar , Função Ventricular Direita , Valor Preditivo dos Testes
9.
Rev. biol. trop ; 71abr. 2023.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1514953

RESUMO

Introduction: Species of Mesochorus are found worldwide and members of this genus are primarily hyperparasitoids of Ichneumonoidea and Tachinidae. Objectives: To describe species of Costa Rican Mesochorus reared from caterpillars and to a lesser extent Malaise-trapped. Methods: The species are diagnosed by COI mtDNA barcodes, morphological inspection, and host data. A suite of images and host data (plant, caterpillar, and primary parasitoid) are provided for each species. Results: A total of 158 new species of Mesochorus. Sharkey is the taxonomic authority for all. Conclusions: This demonstrates a practical application of DNA barcoding that can be applied to the masses of undescribed neotropical insect species in hyperdiverse groups.


Introducción: Las especies de Mesochorus se encuentran en todo el mundo y los miembros de este género son principalmente hiperparasitoides de las familias Ichneumonoidea y Tachinidae. Objetivos: Describir las especies de Mesochorus costarricenses obtenidas de orugas y en menor medida por trampas Malaise. Métodos: Las especies se diagnosticaron mediante el uso de código de barra molecular por COI del ADNmt, inspección morfológica y datos del huésped. Se proporciona un conjunto de imágenes y datos de los huéspedes (planta, oruga y parasitoide primario) para cada especie. Resultados: Se encontró un total de 158 nuevas especies de Mesochorus. Sharkey es la autoridad taxonómica para todas las especies. Conclusiones: Se demuestra una aplicación práctica del código de barras de ADN que se puede aplicar a grandes cantidades de especies de insectos neotropicales no descritas para grupos hiperdiversos.


Assuntos
Animais , Himenópteros/classificação , Costa Rica , Código de Barras de DNA Taxonômico
10.
Sci Rep ; 13(1): 3812, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882484

RESUMO

Recent studies have recognized the importance of characterizing the extent of lung disease in pulmonary hypertension patients by using Computed Tomography. The trustworthiness of an artificial intelligence system is linked with the depth of the evaluation in functional, operational, usability, safety and validation dimensions. The safety and validation of an artificial tool is linked to the uncertainty estimation of the model's prediction. On the other hand, the functionality, operation and usability can be achieved by explainable deep learning approaches which can verify the learning patterns and use of the network from a generalized point of view. We developed an artificial intelligence framework to map the 3D anatomical models of patients with lung disease in pulmonary hypertension. To verify the trustworthiness of the framework we studied the uncertainty estimation of the network's prediction, and we explained the learning patterns of the network. Therefore, a new generalized technique combining local explainable and interpretable dimensionality reduction approaches (PCA-GradCam, PCA-Shape) was developed. Our open-source software framework was evaluated in unbiased validation datasets achieving accurate, robust and generalized results.


Assuntos
Hipertensão Pulmonar , Pneumopatias , Interpretação de Imagem Radiográfica Assistida por Computador , Humanos , Inteligência Artificial , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/etiologia , Modelos Anatômicos , Software , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Pneumopatias/complicações , Pneumopatias/diagnóstico
11.
Front Cardiovasc Med ; 9: 983859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225963

RESUMO

Introduction: Computed tomography pulmonary angiography (CTPA) is an essential test in the work-up of suspected pulmonary vascular disease including pulmonary hypertension and pulmonary embolism. Cardiac and great vessel assessments on CTPA are based on visual assessment and manual measurements which are known to have poor reproducibility. The primary aim of this study was to develop an automated whole heart segmentation (four chamber and great vessels) model for CTPA. Methods: A nine structure semantic segmentation model of the heart and great vessels was developed using 200 patients (80/20/100 training/validation/internal testing) with testing in 20 external patients. Ground truth segmentations were performed by consultant cardiothoracic radiologists. Failure analysis was conducted in 1,333 patients with mixed pulmonary vascular disease. Segmentation was achieved using deep learning via a convolutional neural network. Volumetric imaging biomarkers were correlated with invasive haemodynamics in the test cohort. Results: Dice similarity coefficients (DSC) for segmented structures were in the range 0.58-0.93 for both the internal and external test cohorts. The left and right ventricle myocardium segmentations had lower DSC of 0.83 and 0.58 respectively while all other structures had DSC >0.89 in the internal test cohort and >0.87 in the external test cohort. Interobserver comparison found that the left and right ventricle myocardium segmentations showed the most variation between observers: mean DSC (range) of 0.795 (0.785-0.801) and 0.520 (0.482-0.542) respectively. Right ventricle myocardial volume had strong correlation with mean pulmonary artery pressure (Spearman's correlation coefficient = 0.7). The volume of segmented cardiac structures by deep learning had higher or equivalent correlation with invasive haemodynamics than by manual segmentations. The model demonstrated good generalisability to different vendors and hospitals with similar performance in the external test cohort. The failure rates in mixed pulmonary vascular disease were low (<3.9%) indicating good generalisability of the model to different diseases. Conclusion: Fully automated segmentation of the four cardiac chambers and great vessels has been achieved in CTPA with high accuracy and low rates of failure. DL volumetric biomarkers can potentially improve CTPA cardiac assessment and invasive haemodynamic prediction.

12.
Front Cardiovasc Med ; 9: 956811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911553

RESUMO

Background: There has been a rapid increase in the number of Artificial Intelligence (AI) studies of cardiac MRI (CMR) segmentation aiming to automate image analysis. However, advancement and clinical translation in this field depend on researchers presenting their work in a transparent and reproducible manner. This systematic review aimed to evaluate the quality of reporting in AI studies involving CMR segmentation. Methods: MEDLINE and EMBASE were searched for AI CMR segmentation studies in April 2022. Any fully automated AI method for segmentation of cardiac chambers, myocardium or scar on CMR was considered for inclusion. For each study, compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) was assessed. The CLAIM criteria were grouped into study, dataset, model and performance description domains. Results: 209 studies published between 2012 and 2022 were included in the analysis. Studies were mainly published in technical journals (58%), with the majority (57%) published since 2019. Studies were from 37 different countries, with most from China (26%), the United States (18%) and the United Kingdom (11%). Short axis CMR images were most frequently used (70%), with the left ventricle the most commonly segmented cardiac structure (49%). Median compliance of studies with CLAIM was 67% (IQR 59-73%). Median compliance was highest for the model description domain (100%, IQR 80-100%) and lower for the study (71%, IQR 63-86%), dataset (63%, IQR 50-67%) and performance (60%, IQR 50-70%) description domains. Conclusion: This systematic review highlights important gaps in the literature of CMR studies using AI. We identified key items missing-most strikingly poor description of patients included in the training and validation of AI models and inadequate model failure analysis-that limit the transparency, reproducibility and hence validity of published AI studies. This review may support closer adherence to established frameworks for reporting standards and presents recommendations for improving the quality of reporting in this field. Systematic Review Registration: [www.crd.york.ac.uk/prospero/], identifier [CRD42022279214].

14.
Radiology ; 305(1): 68-79, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35699578

RESUMO

Background Cardiac MRI measurements have diagnostic and prognostic value in the evaluation of cardiopulmonary disease. Artificial intelligence approaches to automate cardiac MRI segmentation are emerging but require clinical testing. Purpose To develop and evaluate a deep learning tool for quantitative evaluation of cardiac MRI functional studies and assess its use for prognosis in patients suspected of having pulmonary hypertension. Materials and Methods A retrospective multicenter and multivendor data set was used to develop a deep learning-based cardiac MRI contouring model using a cohort of patients suspected of having cardiopulmonary disease from multiple pathologic causes. Correlation with same-day right heart catheterization (RHC) and scan-rescan repeatability was assessed in prospectively recruited participants. Prognostic impact was assessed using Cox proportional hazard regression analysis of 3487 patients from the ASPIRE (Assessing the Severity of Pulmonary Hypertension In a Pulmonary Hypertension Referral Centre) registry, including a subset of 920 patients with pulmonary arterial hypertension. The generalizability of the automatic assessment was evaluated in 40 multivendor studies from 32 centers. Results The training data set included 539 patients (mean age, 54 years ± 20 [SD]; 315 women). Automatic cardiac MRI measurements were better correlated with RHC parameters than were manual measurements, including left ventricular stroke volume (r = 0.72 vs 0.68; P = .03). Interstudy repeatability of cardiac MRI measurements was high for all automatic measurements (intraclass correlation coefficient range, 0.79-0.99) and similarly repeatable to manual measurements (all paired t test P > .05). Automated right ventricle and left ventricle cardiac MRI measurements were associated with mortality in patients suspected of having pulmonary hypertension. Conclusion An automatic cardiac MRI measurement approach was developed and tested in a large cohort of patients, including a broad spectrum of right ventricular and left ventricular conditions, with internal and external testing. Fully automatic cardiac MRI assessment correlated strongly with invasive hemodynamics, had prognostic value, were highly repeatable, and showed excellent generalizability. Clinical trial registration no. NCT03841344 Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Ambale-Venkatesh and Lima in this issue. An earlier incorrect version appeared online. This article was corrected on June 27, 2022.


Assuntos
Hipertensão Pulmonar , Inteligência Artificial , Cateterismo Cardíaco , Feminino , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos
15.
Heart ; 108(17): 1392-1400, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35512982

RESUMO

OBJECTIVES: To determine the prognostic value of patterns of right ventricular adaptation in patients with pulmonary arterial hypertension (PAH), assessed using cardiac magnetic resonance (CMR) imaging at baseline and follow-up. METHODS: Patients attending the Sheffield Pulmonary Vascular Disease Unit with suspected pulmonary hypertension were recruited into the ASPIRE (Assessing the Spectrum of Pulmonary hypertension Identified at a REferral Centre) Registry. With exclusion of congenital heart disease, consecutive patients with PAH were followed up until the date of census or death. Right ventricular end-systolic volume index adjusted for age and sex and ventricular mass index were used to categorise patients into four different volume/mass groups: low-volume-low-mass, low-volume-high-mass, high-volume-low-mass and high-volume-high-mass. The prognostic value of the groups was assessed with one-way analysis of variance and Kaplan-Meier plots. Transition of the groups was studied. RESULTS: A total of 505 patients with PAH were identified, 239 (47.3%) of whom have died at follow-up (median 4.85 years, IQR 4.05). The mean age of the patients was 59±16 and 161 (32.7%) were male. Low-volume-low-mass was associated with CMR and right heart catheterisation metrics predictive of improved prognosis. There were 124 patients who underwent follow-up CMR (median 1.11 years, IQR 0.78). At both baseline and follow-up, the high-volume-low-mass group had worse prognosis than the low-volume-low-mass group (p<0.001). With PAH therapy, 73.5% of low-volume-low-mass patients remained in this group, whereas only 17.4% of high-volume-low-mass patients transitioned into low-volume-low-mass. CONCLUSIONS: Right ventricular adaptation assessed using CMR has prognostic value in patients with PAH. Patients with maladaptive remodelling (high-volume-low-mass) are at high risk of treatment failure.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/diagnóstico por imagem , Masculino , Valor Preditivo dos Testes , Prognóstico , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Volume Sistólico , Disfunção Ventricular Direita/complicações , Disfunção Ventricular Direita/etiologia , Função Ventricular Direita , Remodelação Ventricular
16.
J Cardiovasc Magn Reson ; 24(1): 25, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35387651

RESUMO

BACKGROUND: Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value. METHODS: A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correlation coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemodynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018). RESULTS: All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation (SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 is 92.4 ± 3.5 cm2, 91.2 ± 4.5 cm2 and 93.2 ± 3.2 cm2, respectively. Minimal RA area mean and SD DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 89.8 ± 3.9 cm2, 87.0 ± 5.8 cm2 and 91.8 ± 4.8 cm2. Automatic RA area measurements all showed moderate correlation with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve artificial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84. CONCLUSION: Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeatability, moderate associations with invasive haemodynamics and predict mortality.


Assuntos
Inteligência Artificial , Hipertensão Pulmonar , Ventrículos do Coração , Humanos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes
17.
ERJ Open Res ; 8(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35083317

RESUMO

BACKGROUND: Patients with pulmonary hypertension (PH) and lung disease may pose a diagnostic dilemma between idiopathic pulmonary arterial hypertension (IPAH) and PH associated with lung disease (PH-CLD). The prognostic impact of common computed tomography (CT) parenchymal features is unknown. METHODS: 660 IPAH and PH-CLD patients assessed between 2001 and 2019 were included. Reports for all CT scans 1 year prior to diagnosis were analysed for common lung parenchymal patterns. Cox regression and Kaplan-Meier analysis were performed. RESULTS: At univariate analysis of the whole cohort, centrilobular ground-glass (CGG) changes (hazard ratio, HR 0.29) and ground-glass opacification (HR 0.53) predicted improved survival, while honeycombing (HR 2.79), emphysema (HR 2.09) and fibrosis (HR 2.38) predicted worse survival (all p<0.001). Fibrosis was an independent predictor after adjusting for baseline demographics, PH severity and diffusing capacity of the lung for carbon monoxide (HR 1.37, p<0.05). Patients with a clinical diagnosis of IPAH who had an absence of reported parenchymal lung disease (IPAH-noLD) demonstrated superior survival to patients diagnosed with either IPAH who had coexistent CT lung disease or PH-CLD (2-year survival of 85%, 60% and 46%, respectively, p<0.05). CGG changes were present in 23.3% of IPAH-noLD and 5.8% of PH-CLD patients. There was no significant difference in survival between IPAH-noLD patients with or without CGG changes. PH-CLD patients with fibrosis had worse survival than those with emphysema. INTERPRETATION: Routine clinical reports of CT lung parenchymal disease identify groups of patients with IPAH and PH-CLD with significantly different prognoses. Isolated CGG changes are not uncommon in IPAH but are not associated with worse survival.

18.
Zookeys ; 1126: 131-154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760859

RESUMO

A new genus of the tribe Alysiini (Hymenoptera, Braconidae, Alysiinae) is described with specimens from India, Indonesia, Malaysia, Singapore, Thailand, and Vietnam, and six new species are described: Anamalysiaidiastimorpha sp. nov. (type species), A.knekosoma sp. nov., A.mellipes sp. nov., A.transversator sp. nov., A.vandervechti sp. nov., and A.vanhengstumi sp. nov.. We transfer one species from Coelalysia to Anamalysia: A.urbana (Papp, 1967) comb. nov. from Singapore and one species from Alysiasta to Anamalysia: A.triangulum (Fischer, 2006) comb. nov. from Malaysia, Laos, Indonesia and Vietnam. A key to the genus of Anamalysia is included.

19.
Zookeys ; 1099: 57-86, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761440

RESUMO

The Neotropical members formerly included in Earinus Wesmael, 1837 are transferred to a new genus, Chilearinus Sharkey gen. nov. Presently three Nearctic species of Earinus are recognized, i.e., Earinuserythropoda Cameron, 1887, Earinuslimitaris Say,1835, and Earinuszeirapherae Walley, 1935, and these are retained in Earinus. Earinuschubuquensis Berta, 2000 and Earinusscitus Enderlein, 1920 are transferred to Chilearinus, i.e., C.chubuquensis, and C.scitus, comb. nov. One other species is transferred to Chilearinus, i.e., Microgasterrubricollis Spinola, 1851, Chilearinusrubricollis, comb. nov. Two other Neotropical species, Earinushubrechtae Braet, 2002 and Earinusbourguignoni Braet, 2002 were described under the genus Earinus but are here transferred to Lytopylus, L.hubrechtae, and L.bourguignoni comb. nov. Two new species of Chilearinus are described, C.covidchronos and C.janbert spp. nov. The status of Agathislaevithorax Spinola,1851, Agathisrubricata Spinola,1851, and Agathisareolata Spinola, 1851 is discussed. A neotype is designated for Earinuslimitaris (Say, 1835) and diagnosed with a COI barcode. Earinusaustinbakeri and Earinuswalleyi spp. nov. are described. The status of both Earinus and Chilearinus in the Americas is discussed. A revised key to the genera of Agathidinae of the Americas is presented.

20.
Zookeys ; 1110: 135-149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761452

RESUMO

This is a response to a preprint version of "A re-analysis of the data in Sharkey et al.'s (2021) minimalist revision reveals that BINs do not deserve names, but BOLD Systems needs a stronger commitment to open science", https://www.biorxiv.org/content/10.1101/2021.04.28.441626v2. Meier et al. strongly criticized Sharkey et al.'s publication in which 403 new species were deliberately minimally described, based primarily on COI barcode sequence data. Here we respond to these criticisms. The following points are made: 1) Sharkey et al. did not equate BINs with species, as demonstrated in several examples in which multiple species were found to be in single BINs. 2) We reiterate that BINs were used as a preliminary sorting tool, just as preliminary morphological identification commonly sorts specimens based on color and size into unit trays; despite BINs and species concepts matching well over 90% of species, this matching does not equate to equality. 3) Consensus barcodes were used only to provide a diagnosis to conform to the rules of the International Code of Zoological Nomenclature just as consensus morphological diagnoses are. The barcode of a holotype is definitive and simply part of its cellular morphology. 4) Minimalist revisions will facilitate and accelerate future taxonomic research, not hinder it. 5) We refute the claim that the BOLD sequences of Plesiocoelusvanachterbergi are pseudogenes and demonstrate that they simply represent a frameshift mutation. 6) We reassert our observation that morphological evidence alone is insufficient to recognize species within species-rich higher taxa and that its usefulness lies in character states that are congruent with molecular data. 7) We show that in the cases in which COI barcodes code for the same amino acids in different putative species, data from morphology, host specificity, and other ecological traits reaffirm their utility as indicators of genetically distinct lineages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...