Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123359, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228261

RESUMO

Atmospheric pollution has detrimental effects on human health and ecosystems. The southern region of the Himalayas, undergoing rapid urbanization and intense human activities, faces poor air quality marked by high aerosol loadings. In this study, we conducted a two-year PM10 sampling in the suburban area (Godavari) of Kathmandu, a representative metropolis situated in the southern part of the central Himalayas. The trace elements were measured to depict aerosol-bound element loadings, seasonality, and potential sources. The mean concentrations of trace elements varied considerably, ranging from 0.27 ± 0.19 ng m-3 for Tl to 1252.78 ng m-3 for Zn. The average concentration of Co and Ni was 1.2 and 22.4 times higher, respectively, than those in Lhasa city in Tibet in the northern Himalayas. The concentration of Pb was 38 times lower than that in Lahore, Pakistan, and 9 times lower than urban sites in India. For the seasonality, the trace element concentrations displayed remarkable variation, with higher concentrations during the non-monsoon seasons and lower concentrations during the monsoon season. This trend was primarily influenced by anthropogenic activities such as low-grade fuel combustion in vehicles, coal combustion in brick kilns, and biomass burning, along with seasonal rainfall that induced aerosol washout. The enrichment factors (EFs) analysis revealed that Cd, Zn, Sb, Ni, Cu, Cr, and Pb had higher EFs, indicating their significant contributions from anthropogenic sources. In contrast, elements like Tl, Co, V, Cs, U, Ba, Th, and Sr, characterized by lower EFs, were mainly associated with natural sources. The Pb isotopic ratio profiles exhibited the Pb in PM10 are derived major contribution from legacy lead. Biomass burning contributed to the Pb source in winter. These findings provide policymakers with valuable insights to develop guidelines and strategies aimed at improving air quality and mitigating the impact of aerosol pollution on human health in the Himalayan region.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Humanos , Poluentes Atmosféricos/análise , Oligoelementos/análise , Monitoramento Ambiental , Ecossistema , Himalaia , Chumbo/análise , Aerossóis/análise
2.
Heliyon ; 8(11): e11243, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36345519

RESUMO

The present study was conducted in two Ramsar sites, Lake Rara and Lake Ghodaghodi, of the western Nepal covering pre-monsoon and post-monsoon seasons of 2019 to find out the dynamics of the hydrochemistry. A total of 11 major ions (Na+, K+, Ca2+, Mg2+, NH4 +, F-, Cl-, SO4 2-, NO3 -, NO2 -, HCO3 -) along with six on-site parameters (temperature, pH, electrical conductivity, total dissolved solids, dissolved oxygen, and turbidity) were sampled in replicates from 18 sites in Lake Rara and 13 sites in Lake Ghodaghodi. Major ions were analyzed using ion chromatography including field and procedural blanks to maintain quality standards, whereas on-site parameters were measured by using standard multi-meter probes. The most dominant cation and anions were Ca2+ and HCO3 - in both lakes indicating rock dominance through carbonate weathering as the primary source of dissolved ions in the lake waters. Further analysis indicated that Rara belongs to Ca(Mg)HCO3 and Ghodaghodi belongs to Ca-HCO3 type. The higher concentrations of Na+ and Cl- during the post-monsoon indicates a possibility of long-range marine transport through monsoon precipitation.

3.
J Environ Sci (China) ; 115: 10-24, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969440

RESUMO

This study reports for the first time a comprehensive analysis of nitrogenous and carbonaceous aerosols in simultaneously collected PM2.5 and TSP during pre-monsoon (March-May 2018) from a highly polluted urban Kathmandu Valley (KV) of the Himalayan foothills. The mean mass concentration of PM2.5 (129.8 µg/m3) was only ~25% of TSP mass (558.7 µg/ m3) indicating the dominance of coarser mode aerosols. However, the mean concentration as well as fractional contributions of water-soluble total nitrogen (WSTN) and carbonaceous species reveal their predominance in find-mode aerosols. The mean mass concentration of WSTN was 17.43±4.70 µg/m3 (14%) in PM2.5 and 24.64±8.07 µg/m3 (5%) in TSP. Moreover, the fractional contribution of total carbonaceous aerosols (TCA) is much higher in PM2.5 (~34%) than that in TSP (~20%). The relatively low OC/EC ratio in PM2.5 (3.03 ± 1.47) and TSP (4.64 ± 1.73) suggests fossil fuel combustion as the major sources of carbonaceous aerosols with contributions from secondary organic aerosols. Five-day air mass back trajectories simulated with the HYSPLIT model, together with MODIS fire counts indicate the influence of local emissions as well as transported pollutants from the Indo-Gangetic Plain region to the south of the Himalayan foothills. Principal component analysis (PCA) also suggests a mixed contribution from other local anthropogenic, biomass burning, and crustal sources. Our results highlight that it is necessary to control local emissions as well as regional transport while designing mitigation measures to reduce the KV's air pollution.


Assuntos
Poluentes Atmosféricos , Incêndios , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Nitrogênio , Material Particulado/análise , Estações do Ano
4.
Environ Pollut ; 286: 117317, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990047

RESUMO

This study reports on the sources of atmospheric particle-bound mercury (HgP) in less studied regions of Nepal based on the analysis of stable mercury (Hg) isotopes in aerosol samples from two neighboring areas with high and low anthropogenic emissions (Kathmandu and Dhulikhel, respectively) during 2018. Although the Indian monsoon and westerlies are generally regarded as the primary carriers of pollutants to this region via the heavily industrialized Indo-Gangetic Plain, the concentrations of total suspended particles (TSP) and HgP in Kathmandu were higher than those in Dhulikhel, thus suggesting a substantial contribution from local sources. Both isotopic (δ200Hg and Δ199Hg) and non-isotopic evidence indicated that dust, waste burning, and industrial byproducts (without Hg amalgamation) were the major sources of Hg in Kathmandu during the study period. Mercury may have been transported via air masses from Kathmandu to Dhulikhel, as indicated by the similar organic carbon/elemental carbon ratios and seasonal trends of TSP and HgP in these two locations. Local anthropogenic sources were found to contribute significantly to atmospheric Hg pollution through dust resuspension. Therefore, dust resuspension should be considered when evaluating the long-range transport of air pollutants such as Hg, particularly in anthropogenically stressed areas.


Assuntos
Poluentes Atmosféricos , Mercúrio , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Isótopos , Mercúrio/análise
5.
Environ Sci Pollut Res Int ; 28(37): 51530-51543, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33987720

RESUMO

In this work, samples of surface snow, surface ice, snow pit and meltwater from the Laohugou Glacier No. 12 on the northern edge of Tibetan Plateau (TP) were collected during the summer of 2015. The average concentration of Hg in surface snow/ice was 22.41 ng L-1, while the percentage of dissolved mercury (HgD) was observed to be around 26%. An altitudinal magnification of Hg was not observed for surface snow; however, in contrast, a significant positive magnification of Hg with altitude was observed in the surface ice. A higher concentration of Hg corresponded with the dust layer of the snow pit. It was observed that about 42% of Hg was lost from the surface snow when the glacier was exposed to sunlight within the first 24 h indicating some Hg was emitted back to the atmosphere while some were percolated downwards. The result from the principal component analysis (PCA) showed that the sources of Hg in Laohugou Glacier No. 12 were from crustal and biomass burning. Finally, it was estimated that total export of Hg from the outlet river of Laohugou glacier No. 12 in the year 2015 was about 1439.46 g yr-1 with yield of 22.77 µg m2 yr-1. This study provides valuable insights for understanding the behavior of Hg in the glacier of the northern Tibetan Plateau.


Assuntos
Mercúrio , Neve , China , Monitoramento Ambiental , Camada de Gelo , Mercúrio/análise , Tibet
6.
J Environ Sci (China) ; 102: 37-52, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33637262

RESUMO

Precipitation represents an important phenomenon for carbon and nitrogen deposition. Here, the concentrations and fluxes of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) with their potential sources were analyzed in wet precipitation during summer monsoon from the Northern Indo-Gangetic Plain (IGP), important but neglected area. The volume-weighted mean (VWM) concentration of DOC and TDN were 687.04 and 1210.23 µg/L, respectively. Similarly, the VWM concentration of major ions were in a sequence of NH4+ > Ca2+ > SO42- > Na+ > K+ > NO3- > Cl- > Mg2+ > F- > NO2-, suggesting NH4+ and Ca2+ from agricultural activities and crustal dust played a vital role in precipitation chemistry. Moreover, the wet deposition flux of DOC and TDN were 9.95 and 17.06 kg/(ha⋅year), respectively. The wet deposition flux of inorganic nitrogen species such as NH4+-N and NO3--N were 14.31 and 0.47 kg/(ha⋅year), respectively, demonstrating the strong influence of emission sources and precipitation volume. Source attribution from different analysis suggested the influence of biomass burning on DOC and anthropogenic activities (agriculture, animal husbandry) on nitrogenous species. The air-mass back trajectory analysis indicated the influence of air masses originating from the Bay of Bengal, which possibly carried marine and anthropogenic pollutants along with the biomass burning emissions to the sampling site. This study bridges the data gap in the less studied part of the northern IGP region and provides new information for policy makers to deal with pollution control.


Assuntos
Poluentes Atmosféricos , Nitrogênio , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Nitrogênio/análise , Chuva , Estações do Ano
7.
Environ Sci Pollut Res Int ; 26(16): 16457-16469, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30980371

RESUMO

The unique geographic location of Mt. Yulong in the Tibetan Plateau (TP) makes it a favorable site for mercury (Hg) study. Various snow samples, such as surface snow, snow pit, and snowmelt water were collected from Mt. Yulong in the southeastern TP. The average concentration of Hg was found to be 37 ± 26 ng L-1 (mean ± SD), comparable to Hg concentration from other parts of TP in the same year, though it was comparatively higher than those from previous years, suggesting a possible increase of Hg concentration over the TP. The concentration of Hg was higher in the lower elevation of the glaciers possibly due to the surface melting concentration of particulates. Higher concentration of Hg was observed in the fresh snow, suggesting the possibility of long-range transportation. The average concentration of Hg from the snow pit was 1.49 ± 0.78 ng L-1, and the concentration of Hg in the vertical profile of the snow pit co-varied with calcium ion (Ca2+) supporting the fact that the portion of Hg is from the crustal origin. In addition, the principal component analysis (PCA) confirmed that the source of Hg is from the crustal origin; however, the presence of anthropogenic source in the Mt. Yulong was also observed. In surface water around Mt. Yulong, the concentration of HgT was found in the order of Lashihai Lake > Reservoirs > Rivers > Swamps > Luguhu Lake. In lake water, the concentration of HgT showed an increasing trend with depth. Overall, the increased concentration of Hg in recent years from the TP can be of concern and may have an adverse impact on the downstream ecosystem, wildlife, and human health.


Assuntos
Poluentes Ambientais/análise , Mercúrio/análise , Poeira/análise , Monitoramento Ambiental , Camada de Gelo , Lagos/análise , Rios , Neve , Análise Espaço-Temporal , Tibet , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 53(10): 5641-5651, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30994333

RESUMO

Black carbon (BC) is one of the major drivers of climate change, and its measurement in different environment is crucial for the better understanding of long-term trends in the Himalayan-Tibetan Plateau (HTP) as climate warming has intensified in the region. We present the measurement of BC concentration from six lake sediments in the HTP to reconstruct historical BC deposition since the pre-industrial era. Our results show an increasing trend of BC concurrent with increased anthropogenic emission patterns after the commencement of the industrialization era during the 1950s. Also, sedimentation rates and glacier melt strengthening influenced the total input of BC into the lake. Source identification, based on the char and soot composition of BC, suggests biomass-burning emissions as a major contributor to BC, which is further corroborated by open-fire occurrence events in the region. The increasing BC trend continues to recent years, indicating increasing BC emissions, mainly from South Asia.


Assuntos
Lagos , Fuligem , Ásia , Carbono , Monitoramento Ambiental , Sedimentos Geológicos , Tibet
9.
Sci Total Environ ; 697: 134150, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32380618

RESUMO

Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.


Assuntos
Camada de Gelo/química , Mercúrio/química , Compostos de Metilmercúrio/química , Neve/química , Poluentes Químicos da Água/análise , Ecossistema , Cadeia Alimentar , Metilação
10.
Sci Total Environ ; 655: 1207-1217, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30577113

RESUMO

The studies on global pollutant mercury (Hg), which is of public concern due to its high toxicity and capacity to long-range transport via atmospheric circulation, is poorly characterized in wet deposition over the Nepal-Himalayas region. Therefore, in order to understand the concentration levels, spatial distribution and seasonal variation of total Hg, 333 precipitation samples were collected from south to north: Kathmandu (1314 m a.s.l.), Dhunche (2065 m a.s.l.), Dimsa (3078 m a.s.l.) and Gosainkunda (4417 m a.s.l.) characterized as urban, rural, remote forest and remote alpine sites, respectively, for over one-year period. The highest Hg concentration was found in Kathmandu comparable to the urban sites worldwide, and significantly lower concentrations at other three sites demonstrated similar levels as in rural and remote alpine sites worldwide. Higher wet deposition fluxes of 34.91 and 15.89 µg m-2 year-1 were found in Kathmandu and Dhunche respectively, due to higher precipitation amount. Clear and distinct seasonal differences were observed with higher concentrations in non-monsoon and lower values in monsoon periods due to less scavenging and high pollutant concentration loadings during the dry period. The positive correlation of Hg flux and precipitation amount with Hg concentration suggested that both precipitation amount and Hg concentration plays a vital role in Hg deposition in the central Himalayan region. Enrichment factor (EFHg) indicated that the anthropogenic emission sources play a significant role for Hg enrichment and a high ratio of EFmonsoon to EFnon-monsoon (>2.18) suggested that the anthropogenic atmospheric mercury could likely be long-range transported from south Asian regions to the Himalayas during the monsoon season. In addition, our results showed that the major ionic compositions (e.g., SO42-, NO3-, NH4+, K+, Ca2+) could influence Hg concentration in wet precipitation. The anthropogenic sources of Hg such as biomass and fossil fuel combustion, crustal aerosols may contribute to the Hg concentration in wet precipitation over the central Himalayas.

11.
Bull Environ Contam Toxicol ; 99(4): 500-505, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28840577

RESUMO

This study quantified concentrations of mercury (Hg) and its trophic transfer along the fish community in the Indrawati River, Nepal. Stable isotope ratios of nitrogen (δ15N) and carbon (δ13C), complemented by stomach contents data were used to assess the food web structure and trophic transfer of Hg in 54 fishes; 43 Shizothorax richardsonii and 11 Barilius spp. [B. bendelisis (1), B. vagra (3) and B. barila (7)]. Sixty-one muscle samples (including six replicates) were used for the analysis of total mercury (THg) and stable isotopes. Mean THg concentrations in B. spp. and the more common species S. richardsonii was observed to be 218.23 (ng/g, ww) and 90.82 (ng/g, ww), respectively. THg versus total length in both S. richardsonii and B. spp. showed a decreasing tendency with an increase in age. Regression of logTHg versus δ15N among the fish species showed a significant positive correlation only in S. richardsonii indicating biomagnification along the trophic level in this species.


Assuntos
Monitoramento Ambiental/métodos , Peixes/metabolismo , Mercúrio/análise , Rios/química , Poluentes Químicos da Água/análise , Animais , Isótopos de Carbono/análise , Cadeia Alimentar , Conteúdo Gastrointestinal/química , Músculos/química , Nepal , Isótopos de Nitrogênio/análise , Especificidade da Espécie
12.
Bull Environ Contam Toxicol ; 97(6): 855-862, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27734088

RESUMO

This study investigates the contamination levels and risk assessments of 14 elements (Ba, Cd, Co, Cr, Cu, Pb, Li, Mn, Mo, Ni, Sb, Sr, V and Zn) in three sub-basins of Himalayan rivers. Water samples were collected and the hazard quotient (HQ), hazard index (HI), and water quality index (WQI) were calculated. Total average concentrations of the metals were 135.03, 80.10 and 98.34 µg/L in Gandaki, Indrawati and Dudh Koshi rivers, respectively. The results of HQ and HI were less than unity, suggesting a low risk of metals in the region. However, HQ for antimony (Sb) was found to be 4.4 × 10-1, 2.1 × 10-1 and 5.4 × 10-1 in three river basins and HI near unity, suggesting its potential risk. Additionally, HI for Cd in Indrawati was 5.4 × 10-1 also close to unity, suggesting that Cd could have a potential risk to the local residents and aquatic ecosystems. Further, WQI suggested that the rivers Gandaki and Indrawati fell into the excellent water quality and river Dudh Koshi fell into good water quality.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise , Humanos , Nepal , Qualidade da Água
13.
Environ Sci Technol ; 50(6): 2859-69, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26878654

RESUMO

Alpine lake sediments and glacier ice cores retrieved from high mountain regions can provide long-term records of atmospheric deposition of anthropogenic contaminants such as mercury (Hg). In this study, eight lake sediment cores and one glacier ice core were collected from high elevations across the Himalaya-Tibet region to investigate the chronology of atmospheric Hg deposition. Consistent with modeling results, the sediment core records showed higher Hg accumulation rates in the southern slopes of the Himalayas than those in the northern slopes in the recent decades (post-World War II). Despite much lower Hg accumulation rates obtained from the glacier ice core, the temporal trend in the Hg accumulation rates matched very well with that observed from the sediment cores. The combination of the lake sediments and glacier ice core allowed us to reconstruct the longest, high-resolution atmospheric Hg deposition chronology in High Asia. The chronology showed that the Hg deposition rate was low between the 1500s and early 1800, rising at the onset of the Industrial Revolution, followed by a dramatic increase after World War II. The increasing trend continues to the present-day in most of the records, reflecting the continuous increase in anthropogenic Hg emissions from South Asia.


Assuntos
Poluentes Atmosféricos/química , Sedimentos Geológicos/química , Camada de Gelo/química , Lagos/química , Mercúrio/química , Altitude , Ásia , Atmosfera , Monitoramento Ambiental , Humanos , Indústrias , Tibet
14.
Int J Environ Res Public Health ; 11(7): 6771-9, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24978881

RESUMO

The risk of mercury exposure through consumption of fish from Lake Phewa, Nepal was investigated. A total of 170 people were surveyed to know their fish consumption levels. The weekly mercury (Hg) intake in the form of methylmercury (MeHg) through fish was calculated by using the data on average MeHg concentrations in fish, the average consumption of fish per week, and an average body weight of the people. Hotel owners were consuming significantly high amounts of fish, followed by fishermen, in comparison to the government staff, army/police, locals and others (visitors). Some individuals exceeded the Provisional Tolerable Weekly Intake (PTWI) of 1.6 µg per kg body weight of MeHg (FAO/WHO). The minimum intake of MeHg (0.05 µg/kg/week) was found in the visitors (others) category, whereas the hotel owners had the maximum intake (3.71 µg/kg/week). In general, it was found that a person of 60 kg can consume at least 2 kg of fish per week without exceeding PTWI such that it does not pose any health risk associated with Hg poisoning at the present contamination level. Hg based PTWI values for Nepal has not been proposed yet in fishery resources so as to reduce health risk of the people.


Assuntos
Peixes , Contaminação de Alimentos/análise , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Adulto , Animais , Monitoramento Ambiental , Humanos , Lagos , Nepal , Medição de Risco
15.
Environ Sci Pollut Res Int ; 21(4): 2677-87, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24122162

RESUMO

Severe atmospheric pollution transported to Himalayas from South Asia may affect fragile ecosystem and can be harmful for human health in the region. In order to understand the atmospheric chemistry in the southern slope of central Himalayas, where the data is limited, precipitation has been sampled at four sites: Kathmandu (1,314 m), Dhunche (2, 065 m), Dimsa (3,078 m), and Gosainkunda (4,417 m) in Nepal for over a 1-year period characterized by an urban, rural, and remote sites, respectively. HCO3 − is the dominant anion, while the NH4 + is the dominant cation in precipitation at the four sites. Generally, most of ions (e.g., SO4 2−, NO3 −, NH4 +, HCO3 −, and Ca2+) have higher concentrations in urban site compared to the rural sites. Neutralization factor calculation showed that precipitation in the region is highly neutralized by NH4 + and Ca2+. Empirical orthogonal function and correlation analysis indicated that the precipitation chemistry was mostly influenced by crustal, anthropogenic, and marine sources in Nepal. Among different sites, urban area was mostly influenced by anthropogenic inputs and crustal dusts, whereas remote sites were mostly from marine and crustal sources. Seasonal variations show higher ionic concentrations during non-monsoon seasons mainly due to limited precipitation amount. On the other hand, lower ionic concentrations were observed during monsoon season when higher amount of precipitation washes out aerosols. Thus, precipitation chemistry from this work can provide a useful database to evaluate atmospheric environment and its impacts on ecosystem in the southern slope of central Himalayas, Nepal.


Assuntos
Ânions/análise , Cátions/análise , Chuva/química , Neve/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Nepal , Estações do Ano
16.
Bull Environ Contam Toxicol ; 91(3): 272-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23839154

RESUMO

Mercury (Hg) concentrations in four commercial fish species (Tilapia Oreochromis niloticus, Spiny Eel Mastacembelus armatus, African catfish Clarias gariepinus, and Sahar Tor putitora), were investigated in Lake Phewa, Nepal. Mean values of total mercury (THg mg kg(-1), ww) in these fishes were 0.02, 0.07, 0.05, and 0.12 respectively. Methylmercury contributed 82 % of THg. The lowest value was detected in O. niloticus, an exclusive plant feeder. The biomagnification rate of Hg through the fish community was 0.041 per δ(15)N (‰). The present investigation produced an important baseline data of Hg pollution in the fish community in this region.


Assuntos
Exposição Ambiental , Peixes/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Cromatografia Gasosa , Monitoramento Ambiental , Cadeia Alimentar , Lagos , Espectrometria de Massas , Nepal , Especificidade da Espécie , Espectrofotometria Atômica
17.
Environ Geochem Health ; 33(1): 23-32, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20449635

RESUMO

The Yarlung Tsangbo (YT) is a large river running across southern Tibet and has significant effects on its lower reaches, the Ganges-Brahmaputra Basin. In order to investigate the geochemical features of the YT, 18 surface sediment samples were collected; ten trace element concentrations were measured for bulk sediments and two fine grain size fractions. Meanwhile, basic physicochemical parameters and element concentrations of river water were also analyzed. Results indicated that the river water was alkaline (pH 8.42) and that dissolved oxygen was mainly controlled by river water temperature. Some elements (e.g., Zn and Ni) showed close negative relationship to mean grain size of the sediments. Concentrations of most heavy metals, except As of the YT bulk sediments, were similar to those of Upper Crustal Concentration and its lower reaches, indicating almost no anthropogenic impact. Arsenic of the YT sediments was derived fundamentally from the parent rocks of the YT Basin and was far higher than that of its lower reaches. This indicates that relatively small amounts of As from the study area were transported down to the Brahmaputra River under present, relatively dry climatic conditions. However, more YT sediments might have been transported to its low reaches during the Holocene due to the wet climate, giving high As concentration in Holocene sediments of the Ganges-Brahmaputra Basin. Thus, As transported by the YT may produce important influence on the Ganges-Brahmaputra Basin and contribute to its high As concentration in groundwater.


Assuntos
Arsênio/análise , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Oxigênio/análise , Tibet
18.
Environ Pollut ; 157(8-9): 2452-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19329237

RESUMO

Organochlorine pollutants in the major fish species (pike Esox lucius, perch Perca fluviatilis, and roach Rutilus rutilus) of Lake Arungen, Norway, were investigated after an extensive removal of large pike in 2004. The organochlorine pollutants detected in fish liver samples in 2005 were dichlorodiphenyltrichloroethane (DDTs), polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and heptachlor epoxide (HCE). DDTs were the dominant among all analyzed OCs. Sigma PCB and HCB, detected in fish from two clearly distinct trophic levels (prey and predators), give an indication of biomagnification. All OC concentrations in female pike were significantly lower compared to males, which might be due to the removal of high concentrations of pollutants in roe during spawning.


Assuntos
Peixes/metabolismo , Hidrocarbonetos Clorados/metabolismo , Lagos , Poluentes Químicos da Água/metabolismo , Animais , Cyprinidae/metabolismo , DDT/metabolismo , Ecossistema , Monitoramento Ambiental , Esocidae/metabolismo , Cadeia Alimentar , Heptacloro Epóxido/metabolismo , Hexaclorobenzeno/metabolismo , Noruega , Percas/metabolismo , Bifenilos Policlorados/metabolismo
19.
Sci Total Environ ; 399(1-3): 33-40, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18485450

RESUMO

The present study outlines two main trends of mercury transfer patterns through the fish community: 1) the Hg concentrations increase with increase in the trophic level, with top predators having the highest concentrations, and 2) a fast growth rate may dilute the concentrations of Hg in fish muscle tissue (growth biodilution). In 2004, an extensive reduction in number of large pike (Esox lucius L.), was initiated by selective gillnet fishing in Lake Arungen, Norway, in order to increase the pike recruitment due to an expected reduction in cannibalism. In this connection, total mercury (THg) concentrations in the fish community were studied both before (2003) and after (2005) the removal of large pike. The delta(15)N signatures and stomach content analyses indicated that pike and perch (Perca fluviatilis L.) occupied the highest trophic position, while roach (Rutilus rutilus (L.)) was at the lower level, and rudd (Scardinius erythrophthalmus L.) at the lowest. The piscivores, pike and perch, had the highest concentrations of THg. The biomagnification rate of THg through the food web in the fish community was 0.163 (per thousand delta(15)N), with the highest uptake rate (0.232) in perch. A significant decrease in THg concentrations was found in all fish species in 2005 compared to 2003. Removal of the top predators in an Hg contaminated lake might thus be an important management tool for reducing Hg levels in fish, thereby reducing health risk to humans.


Assuntos
Tamanho Corporal/efeitos dos fármacos , Monitoramento Ambiental , Esocidae/fisiologia , Conteúdo Gastrointestinal/efeitos dos fármacos , Mercúrio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Tamanho Corporal/fisiologia , Cyprinidae/fisiologia , Peixes , Água Doce , Conteúdo Gastrointestinal/química , Mercúrio/metabolismo , Isótopos de Nitrogênio , Noruega , Percas/fisiologia , Especificidade da Espécie , Fatores de Tempo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...