Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35271446

RESUMO

While the loss of sensorimotor and autonomic function often occurs due to multiple trauma and pathologies, spinal cord injury is one of the few traumatic pathologies that severely affects multiple organ systems both upstream and downstream of the injury. Current standard of care therapies primarily maintains health and avoids secondary complications. They do not address the underlying neurological condition. Multiple modalities including spinal neuromodulation have shown promise as potential therapies. The objective of this study was to demonstrate the impact of activity-based neurorehabilitation in presence of epidural spinal stimulation to enable simultaneous global recovery of sensorimotor and autonomic functions in patients with complete motor paralysis due to spinal cord injury. These data are unique in that it quantifies simultaneously changes multiple organ systems within only 2 months of intense activity-based neurorehabilitation when also delivering epidural stimulation consisting of sub-motor threshold stimulation over a period of 12-16 hours/day to enable 'self-training' in 10 patients. Finally, these studies were done in a traditional neurorehabilitation clinical in India using off-the-shelf electrode arrays and pulse generators, thus demonstrating the feasibility of this approach in simultaneously enabling recoveries of multiple physiological organ systems after chronic paralysis and the ability to perform these procedures in a standard, well-controlled clinical environment.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Espaço Epidural , Humanos , Paralisia , Modalidades de Fisioterapia , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/fisiologia , Estimulação da Medula Espinal/métodos
2.
Respir Physiol Neurobiol ; 300: 103885, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35276344

RESUMO

INTRODUCTION: Patients with high cervical Spinal Cord Injury (SCI) usually require mechanical ventilation support. Phrenic Nerve Stimulation (PNS) both direct and indirect is the main alternative for these patients to wean off ventilator although PNS has several limitations and phrenic nerve could be also damaged after cervical spinal cord injury. OBJECTIVE: In this study, we assessed if the spinal cord Epidural Electrical Stimulation (EES) at the segments T2-T5, related to intercostal muscles, can facilitate respiratory function and particularly inspired tidal volume during mechanic ventilation. METHODS: Two patients with a high cervical injury were selected for this study with ethical committee permission and under review board supervision. A phrenic nerve conduction study with diaphragm electromyography (DEMG) was performed before and after trial of EES. RESULTS: Results demonstrate that EES at T2-T5 substantially increase the inspired volume. The results of this study also demonstrate that EES at spinal segments T2-T5 can bring patients dependent from mechanical ventilation to pressure support (on CPAP), preventing Baro-trauma and other complications related to mechanical ventilation. CONCLUSION: These findings suggest that tested approach applied alone or in combination with the phrenic nerve stimulation could help to reduce time on mechanical ventilation and related complications.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Diafragma/fisiologia , Humanos , Nervo Frênico/fisiologia , Respiração , Medula Espinal/fisiologia , Estimulação da Medula Espinal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA