Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 124(17): 3591-3601, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32172568

RESUMO

The role of gold nanoparticles (AuNPs) in the degradation of tyrosine intermediates formed during the radiation-induced •OH reaction with tyrosine at pH 6.5 is investigated by measuring the radiolytic yields, G, of tyrosine (-Tyr), dityrosine (DT), and 3,4 dihydroxyphenylalanine (DOPA). The G(DT) is doubled, whereas G(-Tyr) calculated is halved in the presence of 6.0 × 10-10 mol dm-3 AuNPs. Pulse radiolysis studies are carried out to elucidate the mechanism and nature of the transient formed in the reaction of •OH and •N3 with tyrosine. The formation of tyrosyl radical in the presence of AuNPs is found to be a major pathway through the decay of tyrosine-•OH adducts via the water elimination reaction, which is found to be 3× faster in the presence of AuNPs. Quantum chemical calculations on the system showed favorable formation of the tyrosine-AuNP complex. A new plausible mechanism of tyrosine-AuNP complex acting as a Lewis type catalyst in the decay of tyrosine-•OH adducts leading to reduced DOPA formation is proposed. The proposed mechanism is also complemented by the electronic spectra and energetics of the reaction of •OH with tyrosine using density functional theory calculations. Significantly, the H-shift reaction of ortho-tyrosine-•OH adducts is also found to be energetically viable. The investigation provides a new physical insight into the effect of AuNPs on the decay of free-radical transient species and demonstrates the potential of radiation chemical techniques and quantum chemical calculations as a tool for understanding the impact of metal nanoparticles in free-radical oxidation of amino acids, which is important in the use of metal nanoparticles for biomedical applications.

2.
PLoS One ; 8(12): e82529, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367520

RESUMO

Gnidia glauca and Dioscorea bulbifera are traditional medicinal plants that can be considered as sources of natural antioxidants. Herein we report the phytochemical analysis and free radical scavenging activity of their sequential extracts. Phenolic and flavonoid content were determined. Scavenging activity was checked against pulse radiolysis generated ABTS(•+) and OH radical, in addition to DPPH, superoxide and hydroxyl radicals by biochemical methods followed by principal component analysis. G. glauca leaf extracts were rich in phenolic and flavonoid content. Ethyl acetate extract of D. bulbifera bulbs and methanol extract of G. glauca stem exhibited excellent scavenging of pulse radiolysis generated ABTS(•+) radical with a second order rate constant of 2.33 × 10(6) and 1.72 × 10(6), respectively. Similarly, methanol extract of G. glauca flower and ethyl acetate extract of D. bulbifera bulb with second order rate constants of 4.48 × 10(6) and 4.46 × 10(6) were found to be potent scavengers of pulse radiolysis generated OH radical. G. glauca leaf and stem showed excellent reducing activity and free radical scavenging activity. HPTLC fingerprinting, carried out in mobile phase, chloroform: toluene: ethanol (4: 4: 1, v/v) showed presence of florescent compound at 366 nm as well as UV active compound at 254 nm. GC-TOF-MS analysis revealed the predominance of diphenyl sulfone as major compound in G. glauca. Significant levels of n-hexadecanoic acid and octadecanoic acid were also present. Diosgenin (C27H42O3) and diosgenin (3á,25R) acetate were present as major phytoconstituents in the extracts of D. bulbifera. G. glauca and D. bulbifera contain significant amounts of phytochemicals with antioxidative properties that can be exploited as a potential source for herbal remedy for oxidative stress induced diseases. These results rationalize further investigation in the potential discovery of new natural bioactive principles from these two important medicinal plants.


Assuntos
Antioxidantes/química , Dioscorea/química , Sequestradores de Radicais Livres/química , Extratos Vegetais/química , Plantas Medicinais/química , Cromatografia Líquida de Alta Pressão , Flavonas/química , Fenol/química , Análise de Componente Principal
3.
Langmuir ; 29(36): 11431-9, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23947652

RESUMO

The catalytic activity of porous platinum nanostructures, viz. platinum nanonets (PtNNs) and platinum nanoballs (PtNBs), synthesized by radiolysis were studied using two model reactions (i) electron transfer reaction between hexacyanoferrate (III) and sodium thiosulfate and (ii) the reduction of p-nitrophenol by sodium borohydride to p-aminophenol. The kinetic investigations were carried out for the platinum nanostructure-catalyzed reactions at different temperatures. The pseudofirst-order rate constant for the electron transfer reaction between hexacyanoferrate (III) and sodium thiosulfate catalyzed by PtNNs and PtNBs at 293 K are (9.1 ± 0.7) × 10(-3) min(-1) and (16.9 ± 0.6) × 10(-3) min(-1), respectively. For the PtNN- and PtNB-catalyzed reduction of p-nitrophenol to p-aminophenol by sodium borohydride, the pseudofirst-order rate constant was (8.4 ± 0.3) × 10(-2) min(-1) and (12.6 ± 2.5) × 10(-2) min(-1), respectively. The accessible surface area of the PtNNs and PtNBs determined before the reaction are 99 and 110 m(2)/g, respectively. These nanostructures exhibit significantly higher catalytic activity, consistent with the largest accessible surface area reported so far for the solid platinum nanoparticles. The equilibrium of the reactants on the surface of the platinum nanostructures played an important role in the induction time (t0) observed in the reaction. A possible role of structural modifications of PtNBs catalyzed the reaction leading to change in the accessible surface area of PtNBs is being explored to explain the nonlinear behavior in the kinetic curve. The activation energy of the PtNN- and PtNB-catalyzed reduction of p-nitrophenol are 26 and 6.4 kJ/mol, respectively. These observations open up new challenges in the field of material science to design and synthesize platinum nanostructures which could withstand such reaction conditions.

4.
J Phys Chem B ; 115(46): 13650-8, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22047605

RESUMO

The reaction of hydroxyl radical ((•)OH) with guanine was investigated under restricted pH condition (pH 4.6) using pulse radiolysis technique. The time-resolved optical transient absorption spectra showed two peaks centered at 300 and 330 nm at 4 µs after the pulse which exhibited different reactivity toward molecular oxygen (O(2)). The peak at 300 nm was found to be relatively more stable than the peak at 330 nm. The peak corresponding to 330 nm decayed within 20 µs having a first order rate constant 4-7 × 10(4) s(-1) and was pH dependent. On longer time scale, the species decayed by a bimolecular process. The presence of O(2) did not affect its decay rate constant. The (•)OH reacts with guanine at pH 4.6 with a diffusion-controlled second order rate constant of ≥1 × 10(10) mol(-1) dm(3) s(-1). The reaction of Br(2)(•-), O(2)(•-), and 2-hydroxy-2-propyl radical with guanine was also investigated to differentiate among the one-electron oxidized, one-electron reduced species of guanine and the guanine-OH adducts formed in the reaction of (•)OH at pH 4.6. On the basis of the spectral characteristics and reactivity toward O(2), two guanine-OH adduct species were identified (i) the C4-OH adduct species absorbing at 330 nm which has not been reported so far and (ii) the C8-OH adduct species absorbing at 300 nm in agreement with the known literature absorption features. Quantum chemical calculations using BHandHLYP with 6-31+G(d,p) basis set and excited state calculations using TDDFT for all possible transients complement the assignment of the observed spectral peak at 330 nm to the C4-OH adduct of guanine. Furthermore, steady state radiolysis revealed the formation of 8-hydroxy-guanine whose precursor is known to be the C8-OH adduct species.


Assuntos
Guanina/química , Teoria Quântica , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Superóxidos
5.
J Phys Chem B ; 113(7): 2207-11, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19178166

RESUMO

Oxygen and oxidants enhance the sensitivity of cells to radiation. To understand this effect at the mechanistic level, the redox dependences for the reactivity of weakly reducing alpha-monoalkoxyalkyl radicals of 1,4-dioxane and tetrahydrofuran with a series of oxidants, for example, quinones, viologens, and nitro-arenes, with one-electron reduction potentials E71 values ranging from -80 to -640 mV, have been determined using the technique of pulse radiolysis. The second-order rate constants for these reactions with the alpha-monoalkoxyalkyl radicals of 1,4-dioxane and tetrahydrofuran are in the range (0.03-1.5) x 109 and (1.0-6.6) x 109 dm3 mol(-1) s(-1), respectively. The reactions of the alpha-alkoxyalkyl radicals of 1,4-dioxane with quinones and viologens involve an outer-sphere electron transfer, in contrast to a reaction with the nitro-arenes to give adducts. The resulting long-lived nitroaromatic adduct radicals were found to react with the reductant, TMPD, probably leading to the formation of hydroxylamine-type products. In cells, adducts formed on reaction of deoxyribose sugar radical with oxidants and subsequent reactions with reductants may contribute to the mechanisms involved in radiosensitization by oxygen and those oxidants that interact through adduct formation.


Assuntos
Calixarenos/química , Dioxanos/química , Furanos/química , Oxidantes/química , Quinonas/química , Viologênios/química , Radicais Livres/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...