Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
2.
Indian J Clin Biochem ; 39(2): 276-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577139

RESUMO

Lung cancer is a severe and the leading cause of cancer related deaths in men and women all over the world. Tumor suppressor protein (TP53) encoded by the TP53 gene which plays a pivotal role in various cellular tumor suppression processes viz cell cycle arrest and apoptosis. Henceforth, the present study was aimed to TP53 exon4 variants from lung carcinoma. Histopathologic and clinically proven 20 patients of lung cancer were enrolled in this study the average age of patients was 45 ± 8 years which categorized as early onset of lung cancer. Genomic DNA was isolated from the blood specimen of patients. Extracted DNA was subjected to PCR amplification for exon 4 of TP53 using appropriate primers and subsequently amplified products were applied to nucleotide alterations via using the DNA sanger sequencing. The genetic analysis documented five variants in exon4 of TP53 which include viz. 4 substitutions [c.215 > C at codon 72, C. 358-359AA > GG at codon 120] were highly prevalent, occurring in 63% and 25% frequency in patients. Other two variants viz. C. 358 A > C at codon 120, C. 365T > G at codon 122 were present at frequency of 15% whilst one deletion variant [152 del C] was found with 5% frequency. Furthermore, alterations on codon 72, 120,122 and 51 were characterized as possibly damaging by Poly Phen-2 and decreased stability using stability bioinformatic tool. Taken together all these findings infer that TP53 gene involved in modulation and susceptibility to lung cancer.

3.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543042

RESUMO

SARS-CoV, an RNA virus, is contagious and displays a remarkable degree of adaptability, resulting in intricate disease presentations marked by frequent genetic mutations that can ultimately give rise to drug resistance. Targeting its viral replication cycle could be a potential therapeutic option to counter its viral growth in the human body leading to the severe infectious stage. The Mpro of SARS-CoV-2 is a promising target for therapeutic development as it is crucial for viral transcription and replication. The derivatives of ß-diketone and coumarin have already been reported for their antiviral potential and, thus, are considered as a potential scaffold in the current study for the computational design of potential analogs for targeting the viral replication of SARS-CoV-2. In our study, we used novel diketone-hinged coumarin derivatives against the SARS-CoV-2 MPro to develop a broad-spectrum antiviral agent targeting SARS-CoV-2. Through an analysis of pharmacokinetics and docking studies, we identified a list of the top 10 compounds that demonstrated effectiveness in inhibiting the SARS-CoV-2 MPro virus. On the basis of the pharmacokinetics and docking analyses, the top 5 novel coumarin analogs were synthesized and characterized. The thermodynamic stability of compounds KS82 and KS94 was confirmed by their molecular dynamics, and the stability of the simulated system indicated their inhibitory nature. Molecules KS82 and KS94 were further evaluated for their anti-viral potential using Vero E6 cells followed by RT-PCR assay against SARS-CoV-2. The test compound KS82 was the most active with the potential to inhibit SARS-CoV-2 replication in Vero E6 cells. These data indicate that KS82 prevents the attack of the virus and emerges as the primary candidate with promising antiviral properties.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cumarínicos/farmacologia , Bioensaio , Cetonas , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases , Simulação de Dinâmica Molecular
4.
Immunology ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501302

RESUMO

Latent human cytomegalovirus (hCMV) infection can pose a serious threat of reactivation and disease occurrence in immune-compromised individuals. Although T cells are at the core of the protective immune response to hCMV infection, a detailed characterization of different T cell subsets involved in hCMV immunity is lacking. Here, in an unbiased manner, we characterized over 8000 hCMV-reactive peripheral memory T cells isolated from seropositive human donors, at a single-cell resolution by analysing their single-cell transcriptomes paired with the T cell antigen receptor (TCR) repertoires. The hCMV-reactive T cells were highly heterogeneous and consisted of different developmental and functional memory T cell subsets such as, long-term memory precursors and effectors, T helper-17, T regulatory cells (TREGs ) and cytotoxic T lymphocytes (CTLs) of both CD4 and CD8 origin. The hCMV-specific TREGs , in addition to being enriched for molecules known for their suppressive functions, showed enrichment for the interferon response signature gene sets. The hCMV-specific CTLs were of two types, the pre-effector- and effector-like. The co-clustering of hCMV-specific CD4-CTLs and CD8-CTLs in both pre-effector as well as effector clusters suggest shared transcriptomic signatures between them. The huge TCR clonal expansion of cytotoxic clusters suggests a dominant role in the protective immune response to CMV. The study uncovers the heterogeneity in the hCMV-specific memory T cells revealing many functional subsets with potential implications in better understanding of hCMV-specific T cell immunity. The data presented can serve as a knowledge base for designing vaccines and therapeutics.

5.
Environ Sci Pollut Res Int ; 31(16): 23680-23696, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427170

RESUMO

Plastics, especially polystyrene nanoplastic particles (PSNPs), are known for their durability and absorption properties, allowing them to interact with environmental pollutants such as di-n-butyl phthalate (DBP). Previous research has highlighted the potential of these particles as carriers for various pollutants, emphasizing the need to understand their environmental impact comprehensively. This study focuses on the subchronic exposure of male Swiss albino mice to PSNP and DBP, aiming to investigate their reproductive toxicity between these pollutants in mammalian models. The primary objective of this study is to examine the reproductive toxicity resulting from simultaneous exposure to PSNP and DBP in male Swiss albino mice. The study aims to analyze sperm parameters, measure antioxidant enzyme activity, and conduct histopathological and morphometric examinations of the testis. By investigating the individual and combined effects of PSNP and DBP, the study seeks to gain insights into their impact on the reproductive profile of male mice, emphasizing potential synergistic interactions between these environmental pollutants. Male Swiss albino mice were subjected to subchronic exposure (60 days) of PSNP (0.2 mg/m, 50 nm size) and DBP (900 mg/kg bw), both individually and in combination. Various parameters, including sperm parameters, antioxidant enzyme activity, histopathological changes, and morphometric characteristics of the testis, were evaluated. The Johnsen scoring system and histomorphometric parameters were employed for a comprehensive assessment of spermatogenesis and testicular structure. The study revealed non-lethal effects within the tested doses of PSNP and DBP alone and in combination, showing reductions in body weight gain and testis weight compared to the control. Individual exposures and the combination group exhibited adverse effects on sperm parameters, with the combination exposure demonstrating more severe outcomes. Structural abnormalities, including vascular congestion, Leydig cell hyperplasia, and the extensive congestion in tunica albuginea along with both ST and Leydig cell damage, were observed in the testis, underscoring the reproductive toxicity potential of PSNP and DBP. The Johnsen scoring system and histomorphometric parameters confirmed these findings, providing interconnected results aligning with observed structural abnormalities. The study concludes that simultaneous exposure to PSNP and DBP induces reproductive toxicity in male Swiss albino mice. The combination of these environmental pollutants leads to more severe disruptions in sperm parameters, testicular structure, and antioxidant defense mechanisms compared to individual exposures. The findings emphasize the importance of understanding the interactive mechanisms between different environmental pollutants and their collective impact on male reproductive health. The use of the Johnsen scoring system and histomorphometric parameters provides a comprehensive evaluation of spermatogenesis and testicular structure, contributing valuable insights to the field of environmental toxicology.


Assuntos
Poluentes Ambientais , Testículo , Masculino , Camundongos , Animais , Dibutilftalato/toxicidade , Poliestirenos/toxicidade , Microplásticos , Antioxidantes/farmacologia , Sêmen , Espermatozoides , Poluentes Ambientais/toxicidade , Mamíferos
6.
Mol Biol Rep ; 51(1): 289, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329653

RESUMO

BACKGROUND: The accurate and expeditious detection of SARS-CoV-2 mutations is critical for monitoring viral evolution, assessing its impact on transmission, virulence, and vaccine efficacy, and formulating public health interventions. In this study, a detection system utilizing micro temperature gradient gel electrophoresis (µTGGE) was developed for the identification of the D614 and G614 variants of the SARS-CoV-2 spike protein. METHODS: The in vitro synthesized D614 and G614 gene fragments of the SARS-CoV-2 spike protein were amplified via polymerase chain reaction and subjected to µTGGE analysis. RESULTS: The migration patterns exhibited by the D614 and G614 variants on the polyacrylamide gel were distinctly dissimilar and readily discernible by µTGGE. In particular, the mid-melting pattern of D614 was shorter than that of G614. CONCLUSIONS: Our results demonstrate the capability of µTGGE for the rapid, precise, and cost-effective detection of SARS-CoV-2 spike protein D614 and G614 variants without the need for sequencing. Therefore, this approach holds considerable potential for use in point-of-care mutation assays for SARS-CoV-2 and other pathogens.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Eletroforese em Gel de Gradiente Desnaturante , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
Biomedicines ; 12(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38255196

RESUMO

The global statistics of bone disorders, skeletal defects, and fractures are frightening. Several therapeutic strategies are being used to fix them; however, RNAi-based siRNA therapy is starting to prove to be a promising approach for the prevention of bone disorders because of its advanced capabilities to deliver siRNA or siRNA drug conjugate to the target tissue. Despite its 'bench-to-bedside' usefulness and approval by food and drug administration for five siRNA-based therapeutic medicines: Patisiran, Vutrisiran, Inclisiran, Lumasiran, and Givosiran, its use for the other diseases still remains to be resolved. By correcting the complications and complexities involved in siRNA delivery for its sustained release, better absorption, and toxicity-free activity, siRNA therapy can be harnessed as an experimental tool for the prevention of complex and undruggable diseases with a personalized medicine approach. The present review summarizes the findings of notable research to address the implications of siRNA in bone health for the restoration of bone mass, recovery of bone loss, and recuperation of bone fractures.

8.
Nat Med ; 29(12): 3127-3136, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957373

RESUMO

Toll-like receptor-driven and interleukin-1 (IL-1) receptor-driven inflammation mediated by IL-1 receptor-associated kinase 4 (IRAK4) is involved in the pathophysiology of hidradenitis suppurativa (HS) and atopic dermatitis (AD). KT-474 (SAR444656), an IRAK4 degrader, was studied in a randomized, double-blind, placebo-controlled phase 1 trial where the primary objective was safety and tolerability. Secondary objectives included pharmacokinetics, pharmacodynamics and clinical activity in patients with moderate to severe HS and in patients with moderate to severe AD. KT-474 was administered as a single dose and then daily for 14 d in 105 healthy volunteers (HVs), followed by dosing for 28 d in an open-label cohort of 21 patients. Degradation of IRAK4 was observed in HV blood, with mean reductions after a single dose of ≥93% at 600-1,600 mg and after 14 daily doses of ≥95% at 50-200 mg. In patients, similar IRAK4 degradation was achieved in blood, and IRAK4 was normalized in skin lesions where it was overexpressed relative to HVs. Reduction of disease-relevant inflammatory biomarkers was demonstrated in the blood and skin of patients with HS and patients with AD and was associated with improvement in skin lesions and symptoms. There were no drug-related infections. These results, from what, to our knowledge, is the first published clinical trial using a heterobifunctional degrader, provide initial proof of concept for KT-474 in HS and AD to be further confirmed in larger trials. ClinicalTrials.gov identifier: NCT04772885 .


Assuntos
Dermatite Atópica , Hidradenite Supurativa , Humanos , Hidradenite Supurativa/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1 , Resultado do Tratamento , Pele/patologia , Método Duplo-Cego , Índice de Gravidade de Doença
9.
Neurotoxicology ; 99: 139-151, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865141

RESUMO

It is widely reported now that nanoplastic particles have potential neurotoxic effects and may disturb central nervous system (CNS) function. However, the mechanism behind these toxic effects still needs to be elucidated. In the current study, we investigated the effects of polystyrene nanoplastics (PS-NPs) on changes in learning, memory, and anxiety-related behavior in mice based on some selected biochemical, molecular, and histopathological changes in three important brain regions (Cortex, Hypothalamus, and Hippocampus). Male mice were orally administered daily with two doses of 50 nm PS-NPs (0.2 mg/ml and 1 mg/ml) for 8 weeks. We observed decreased expression of neurotransmitter-related genes (VAChT, GAD, and SYP) in the cortex, hypothalamus, and hippocampus areas of the mouse brain. Other biochemical variables including, antioxidant enzymes, biomarkers for oxidative stress, and acetylcholinesterase activity showed significant alterations in all three brain regions. Molecular and neurochemical data thus suggest significant neurobehavioral changes following sub-chronic exposure to PS-NPs which may lead to enhanced anxiety-related and spatial learning and memory-related impairments by affecting limbic areas of the brain.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Masculino , Camundongos , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Ansiedade/induzido quimicamente , Transtornos da Memória/metabolismo , Nanopartículas/química , Poluentes Químicos da Água/toxicidade
10.
Cells ; 12(18)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759498

RESUMO

Avascular necrosis of the femoral head (ANFH) is a painful disorder characterized by the cessation of blood supply to the femoral head, leading to its death and subsequent joint collapse. Influenced by several risk factors, including corticosteroid use, excessive alcohol intake, hypercholesterolemia, smoking and some inflammatory disorders, along with cancer, its clinical consequences are thrombus formation due to underlying inflammation and endothelial dysfunction, which collaborates with coagulopathy and impaired angiogenesis. Nonetheless, angiogenesis resolves the obstructed free flow of the blood by providing alternative routes. Clinical manifestations of early stage of ANFH mimic cysts or lesions in subchondral bone, vasculitis and transient osteoporosis of the hip, rendering it difficult to diagnose, complex to understand and complicated to cure. To date, the treatment methods for ANFH are controversial as no foolproof curative strategy is available, and these depend upon different severity levels of the ANFH. From an in-depth understanding of the pathological determinants of ANFH, it is clear that impaired angiogenesis, coagulopathy and endothelial dysfunction contribute significantly. The present review has set two aims, firstly to examine the role and relevance of this molecular triad (impaired angiogenesis, coagulopathy and endothelial dysfunction) in ANFH pathology and secondly to propose some putative therapeutic strategies, delineating the fact that, for the better management of ANFH, a combined strategy to curtail this molecular triangle must be composed rather than focusing on individual contributions.


Assuntos
Necrose da Cabeça do Fêmur , Trombose , Vasculite , Humanos , Necrose da Cabeça do Fêmur/etiologia , Necrose da Cabeça do Fêmur/patologia , Cabeça do Fêmur/patologia , Trombose/complicações , Fatores de Risco , Vasculite/complicações
11.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37631023

RESUMO

Resistance to isoniazid (INH) is common and increases the possibility of acquiring multidrug-resistant tuberculosis. For this study, isoniazid-loaded nanostructured lipid carriers (INH-NLCs) were developed and effectively functionalized with mannose (Man) to enhance the residence time of the drug within the lungs via specific delivery and increase the therapeutic efficacy of the formulation. The mannose-functionalized isoniazid-loaded nanostructured lipid carrier (Man-INH-NLC) formulation was evaluated with respect to various formulation parameters, namely, encapsulation efficiency (EE), drug loading (DL), average particle size (PS), zeta potential (ZP), polydispersity index (PDI), in vitro drug release (DR), and release kinetics. The in vitro inhalation behavior of the developed formulation after nebulization was investigated using an Andersen cascade impactor via the estimation of the mass median aerosolized diameter (MMAD) and geometric aerodynamic diameter (GAD) and subsequently found to be suitable for effective lung delivery. An in vivo pharmacokinetic study was carried out in a guinea pig animal model, and it was demonstrated that Man-INH-NLC has a longer residence time in the lungs with improved pharmacokinetics when compared with unfunctionalized INH-NLC, indicating the enhanced therapeutic efficacy of the Man-INH-NLC formulation. Histopathological analysis led us to determine that the extent of tissue damage was more severe in the case of the pure drug solution of isoniazid compared to the Man-INH-NLC formulation after nebulization. Thus, the nebulization of Man-INH-NLC was found to be safe, forming a sound basis for enhancing the therapeutic efficacy of the drug for improved management in the treatment of pulmonary tuberculosis.

12.
Front Immunol ; 14: 1135373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545504

RESUMO

TAM receptors (TYRO3, AXL, and MERTK) comprise a family of homologous receptor tyrosine kinases (RTK) that are expressed across a range of liquid and solid tumors where they contribute to both oncogenic signaling to promote tumor proliferation and survival, as well as expressed on myeloid and immune cells where they function to suppress host anti-tumor immunity. In recent years, several strategies have been employed to inhibit TAM kinases, most notably small molecule tyrosine kinase inhibitors and inhibitory neutralizing monoclonal antibodies (mAbs) that block receptor dimerization. Targeted protein degraders (TPD) use the ubiquitin proteasome pathway to redirect E3 ubiquitin ligase activity and target specific proteins for degradation. Here we employ first-in-class TPDs specific for MERTK/TAMs that consist of a cereblon E3 ligase binder linked to a tyrosine kinase inhibitor targeting MERTK and/or AXL and TYRO3. A series of MERTK TPDs were designed and investigated for their capacity to selectively degrade MERTK chimeric receptors, reduce surface expression on primary efferocytic bone marrow-derived macrophages, and impact on functional reduction in efferocytosis (clearance of apoptotic cells). We demonstrate proof-of-concept and establish that TPDs can be tailored to either selectivity degrades MERTK or concurrently degrade multiple TAMs and modulate receptor expression in vitro and in vivo. This work demonstrates the utility of proteome editing, enabled by tool degraders developed here towards dissecting the therapeutically relevant pathway biology in preclinical models, and the ability for TPDs to degrade transmembrane proteins. These data also provide proof of concept that TPDs may serve as a viable therapeutic strategy for targeting MERTK and other TAMs and that this technology could be expanded to other therapeutically relevant transmembrane proteins.


Assuntos
Receptor Tirosina Quinase Axl , Neoplasias , Humanos , c-Mer Tirosina Quinase/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Proteínas de Membrana
13.
Microorganisms ; 11(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37374986

RESUMO

Human skin and its commensal microbiome form the first layer of protection to the outside world. A dynamic microbial ecosystem of bacteria, fungi and viruses, with the potential to respond to external insult, the skin microbiome has been shown to evolve over the life course with an alteration in taxonomic composition responding to altered microenvironmental conditions on human skin. This work sought to investigate the taxonomic, diversity and functional differences between infant and adult leg skin microbiomes. A 16S rRNA gene-based metataxonomic analysis revealed significant differences between the infant and adult skin groups, highlighting differential microbiome profiles at both the genus and species level. Diversity analysis reveals differences in the overall community structure and associated differential predicted functional profiles between the infant and adult skin microbiome suggest differing metabolic processes are present between the groups. These data add to the available information on the dynamic nature of skin microbiome during the life course and highlight the predicted differential microbial metabolic process that exists on infant and adult skin, which may have an impact on the future design and use of cosmetic products that are produced to work in consort with the skin microbiome.

14.
Vaccines (Basel) ; 11(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851139

RESUMO

Atherosclerosis is the formation of plaque within arteries due to overt assemblage of fats, cholesterol and fibrous material causing a blockage of the free flow of blood leading to ischemia. It is harshly impinging on health statistics worldwide because of being principal cause of high morbidity and mortality for several diseases including rheumatological, heart and brain disorders. Atherosclerosis is perpetuated by pro-inflammatory and exacerbated by pro-coagulatory mediators. Besides several other pathways, the formation of neutrophil extracellular traps (NETs) and the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contribute significantly to the initiation and propagation of atherosclerotic plaque for its worst outcomes. The present review highlights the contribution of these two disturbing processes in atherosclerosis, inflammation and atherothrombosis in their individual as well as collaborative manner.

15.
Environ Sci Pollut Res Int ; 30(60): 124902-124920, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36607579

RESUMO

This work successfully fabricated graphitic carbon nitride and magnetically recoverable α-Fe2O3/g-C3N4/SiO2 photo-Fenton catalysts using thermal polycondensation and in situ-simple precursor drying-calcination process, respectively, was examined for model synthetic rhodamine B (RhB) dye in the presence of H2O2 and acidic pH under simulated visible light irradiation. An aqueous suspension of the reaction mixture of dye-containing wastewater was fully degraded and reached 97% of photo-Fenton degradation efficiency within 120 min followed by the production of hydroxyl radical (•OH). The dominant hydroxyl radical position generated surface charge, electrostatic potential distribution, and average local ionization potential, which contributed to the complete mineralization of RhB dye, according to the density functional theory (DFT) calculations. HPLC and GCMS experiments were performed to examine the degradation fragments of RhB and draw a plausible mechanistic pathway which showed that RhB degradation generated a series of N-deethylated products, followed by a one-time ring-opening, which indicated that photosensitization induced a photocatalysis reaction mechanism.


Assuntos
Peróxido de Hidrogênio , Dióxido de Silício , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Luz , Catálise
16.
Cureus ; 14(3): e23589, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35386478

RESUMO

Objective The goal of this study is to compare the effectiveness of three different meditation techniques (two internal focus techniques and one external focus technique) using a low-cost portable electroencephalography (EEG) device, namely, MUSE, for an objective comparison. Methods This is an IRB-approved retrospective study. All participants in the study were healthy adults. Each study participant (n = 34) was instructed to participate in three meditation sessions: mantra (internal), breath (internal), and external point. The MUSE brain-sensing headband (EEG) was used to document the "total time spent in the calm state" and the "total time spent in the calm or neutral state" (outcomes) in each three-minute session to conduct separate analyses for the meditation type. Separate generalized linear models (GLM) with unstructured covariance structures were used to examine the association between each outcome and the explanatory variable (meditation type). For all models, if there was a significant association between the outcome and the explanatory variable, pairwise comparisons were carried out using the Tukey-Kramer correction. Results The median time (in seconds) spent in the calm state while practicing mantra meditation was 131.5 (IQR: 94-168), while practicing breath meditation was 150 (IQR: 113-164), and while practicing external-point meditation was 100 (IQR: 62-126). Upon analysis, there was a significant association between the meditation type and the time spent in the calm state (p-value = 0.0006). Conclusion This is the first study comparing "internal" versus "external" meditation techniques using an objective measure. Our study shows the breath and mantra technique as superior to the external-point technique as regards time spent in the calm state. Additional research is needed using a combination of "EEG" and patient-reported surveys to compare various meditative practices. The findings from this study can help incorporate specific meditation practices in future mindfulness-based studies that are focused on healthcare settings and on impacting clinical outcomes, such as survival or disease outcomes.

17.
Nat Commun ; 13(1): 985, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190556

RESUMO

Simultaneous large-scale recordings and optogenetic interventions may hold the key to deciphering the fast-paced and multifaceted dialogue between neurons that sustains brain function. Here we have taken advantage of thin, cell-sized, optical fibers for minimally invasive optogenetics and flexible implantations. We describe a simple procedure for making those fibers side-emitting with a Lambertian emission distribution. Here we combined those fibers with silicon probes to achieve high-quality recordings and ultrafast multichannel optogenetic inhibition. Furthermore, we developed a multi-channel optical commutator and general-purpose patch-cord for flexible experiments. We demonstrate that our framework allows to conduct simultaneous laminar recordings and multifiber stimulations, 3D optogenetic stimulation, connectivity inference, and behavioral quantification in freely moving animals. Our framework paves the way for large-scale photo tagging and controlled interrogation of rapid neuronal communication in any combination of brain areas.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Optogenética/métodos , Animais , Encéfalo/citologia , Eletrodos Implantados , Masculino , Camundongos , Fibras Ópticas , Optogenética/instrumentação , Ratos , Técnicas Estereotáxicas
18.
Pharmacol Ther ; 235: 108120, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35085604

RESUMO

The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.


Assuntos
Exposição por Inalação , Nanopartículas , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Pulmão/patologia , Avaliação de Resultados em Cuidados de Saúde , Tamanho da Partícula
19.
Drug Deliv Transl Res ; 12(2): 435-443, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34739717

RESUMO

Minimally invasive biosensing using microneedles (MNs) is a desirable technology for continuous healthcare monitoring. Among a wide range of MNs, porous MNs are expected to be applied for sampling of interstitial fluids (ISF) by connecting the internal tissue to external measurement devices. In order to realize a continuous measurement of biomarkers in ISF through porous MNs, their integration with a microfluidic chip is a promising approach due to its applicability to micro-total analysis system (µTAS) technology. In this study, we developed a fluidic system to directly interface porous MNs to a microfluidic chip consisting of a capillary pump for the continuous sampling of ISF. The porous and flexible MNs made of PDMS are connected to the microfluidic chip fabricated by standard microelectro-mechanical system (MEMS) processes, showing a continuous flow of phosphate buffered saline (PBS). The developed device will lead to the minimally invasive and continuous biosampling for long-term healthcare monitoring.


Assuntos
Líquido Extracelular , Microfluídica , Agulhas , Porosidade , Pele
20.
Food Sci Technol Int ; 28(1): 93-104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33853399

RESUMO

Pomegranate juice is popular due to its unique health benefits, sensory characteristics and also a good source of bioactive compounds. Comparative study on processing effect of Not from Concentrate (NFC) and Reconstituted from concentrate (RFC) pomegranate juice on the nutritional and sensory characteristics of 'Ganesh' variant was conducted. Results showed that not much differences observed in parameters like pH, acidity, essential elements, protein, total sugars and polyphenol content between NFC and RFC. As per the study NFC had a better antioxidant activity with intracellular ROS inhibition of 11% higher with significant (p < 0.05) than RFC in HepG2 cell lines. Total anthocyanin content was significantly different (p < 0.05) in NFC (428.05 mg/l) compared to 326.74 mg/l in RFC expressed as cyanidin-3-glucoside. Iron uptake was 40 units (µg/mg protein) higher in NFC than RFC (p < 0.05) in HepG2 cells. Sensory flavor profile showed NFC having significant differences with respect to characteristic pomegranate freshness, fruitiness, sweetness and astringency mouthfeel. RFC had higher sweetish and cooked flavor with additional vegetable like notes of beet and carrot. Based on the data better antioxidant activity, iron bioavailability, anthocyanin content and sensory attributes were captured in pomegranate NFC juices over RFC juices.


Assuntos
Lythraceae , Punica granatum , Antioxidantes/análise , Frutas/química , Sucos de Frutas e Vegetais , Polifenóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...