Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Sci Rev (Oxf) ; 4: 100044, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35875514

RESUMO

Introduction: Human species is confronting with a gigantic global COVID-19 pandemic. Initially, it was observed in Wuhan, China, and the COVID-19 cases spread across the globe with lightning speed and resulted in the 21st century pandemic. If scientific reports are taken care of, it is noteworthy that this virus possesses more specific characteristics due to its structure. The distinctive structure has a higher binding affinity with angiotensin-converting enzyme 2 (ACE2) protein, and this is used as an access point to gain access to hosts. Methods: A complete literature search was conducted using PubMed, Google Scholar, SciFinder, and deep-diving Google Search using keywords such as "Pregnancy, COVID-19, Newborn, Fetus, Coronavirus 2019, Neonate, Pregnant women, and vertical transmission". Result and discussion: The SARS-CoV-2 virus is unlike its former analogs: SARS-CoV, and MERS-CoV in 2002 and 2012, respectively, or anything mankind has faced earlier concerning viciousness, global spread, and gravity of a causative agent. The current review has delved into articles published in various journals worldwide including the latest studies on the impact of COVID-19 on pregnant women and neonates and has discussed complications and challenges, psychological health, immunological response, vertical transmission, concurrent disorders, vaccine debate, management recommendations, recent news of the approval of COVID-19 vaccine for 6 months and older babies, and future perspectives.

2.
Int J Phytoremediation ; 24(8): 808-821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34559600

RESUMO

There is a significant interest to develop sensing devices that detect water toxins, especially heavy metal ions. Although there have already been numerical reports on detecting toxic heavy metal ions, the use of adaptable devices could enable a broader range of sensing applications. Here, we used fresh peel extract (PeA) and dried peel extract (DPeA) of Persea americana (Avocado) as a reducing and capping agent to synthesize and stabilize AgNPs. The dimensions of NPs were controlled by tuning pH, temperature, and volume of the reducing agent. The sensitivity and selectivity of the AgNPs toward various metal ions viz. Ni(II), Cd(II), Al(III), Hg(II), Cr(III), Ba(II), Pb(II), Zn(II), Co(II), Mn(II), Cu(II), Ca(II), Mg(II), and K(I) were studied. The detection probe was found to be selective and sensitive toward Al(III) and Cr(III) ions with the detection limit of 0.04 ppm and 0.05 ppm, respectively. High-resolution transmission electron microscope (HRTEM), ultraviolet-visible (UV-Vis) spectroscopy, and dynamic light scattering (DLS) analysis results confirm an agglomeration-based mechanism for sensing both metal ions. This method can be exploited for the colorimetric detection of toxic heavy metals in real water samples.


This is the first study to report the use of avocado peel extract to synthesize AgNPs in sensing aqueous Al(III) and Cr(III) at trace level concentration.


Assuntos
Nanopartículas Metálicas , Persea , Alumínio , Biodegradação Ambiental , Cromo , Íons , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...