Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 160(Pt 12): 2607-2617, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25273002

RESUMO

Geobacter species often play an important role in the in situ bioremediation of uranium-contaminated groundwater, but little is known about how these microbes avoid uranium toxicity. To evaluate this further, the proteome of Geobacter sulfurreducens exposed to 100 µM U(VI) acetate was compared to control cells not exposed to U(VI). Of the 1363 proteins detected from these cultures, 203 proteins had higher abundance during exposure to U(VI) compared with the control cells and 148 proteins had lower abundance. U(VI)-exposed cultures expressed lower levels of proteins involved in growth, protein and amino acid biosynthesis, as well as key central metabolism enzymes as a result of the deleterious effect of U(VI) on the growth of G. sulfurreducens. In contrast, proteins involved in detoxification, such as several efflux pumps belonging to the RND (resistance-nodulation-cell division) family, and membrane protection, and other proteins, such as chaperones and proteins involved in secretion systems, were found in higher abundance in cells exposed to U(VI). Exposing G. sulfurreducens to U(VI) resulted in a higher abundance of many proteins associated with the oxidative stress response, such as superoxide dismutase and superoxide reductase. A strain in which the gene for superoxide dismutase was deleted grew more slowly than the WT strain in the presence of U(VI), but not in its absence. The results suggested that there is no specific mechanism for uranium detoxification. Rather, multiple general stress responses are induced, which presumably enable Geobacter species to tolerate high uranium concentrations.


Assuntos
Proteínas de Bactérias/análise , Geobacter/química , Compostos Organometálicos/metabolismo , Proteoma/análise , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Geobacter/efeitos dos fármacos , Geobacter/metabolismo
2.
Biochim Biophys Acta ; 1807(4): 404-12, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21236241

RESUMO

Previous studies with Geobacter sulfurreducens have demonstrated that OmcS, an abundant c-type cytochrome that is only loosely bound to the outer surface, plays an important role in electron transfer to Fe(III) oxides as well as other extracellular electron acceptors. In order to further investigate the function of OmcS, it was purified from a strain that overproduces the protein. Purified OmcS had a molecular mass of 47015 Da, and six low-spin bis-histidinyl hexacoordinated heme groups. Its midpoint redox potential was -212 mV. A thermal stability analysis showed that the cooperative melting of purified OmcS occurs in the range of 65-82 °C. Far UV circular dichroism spectroscopy indicated that the secondary structure of purified OmcS consists of about 10% α-helix and abundant disordered structures. Dithionite-reduced OmcS was able to transfer electrons to a variety of substrates of environmental importance including insoluble Fe(III) oxide, Mn(IV) oxide and humic substances. Stopped flow analysis revealed that the reaction rate of OmcS oxidation has a hyperbolic dependence on the concentration of the studied substrates. A ten-fold faster reaction rate with anthraquinone-2,6-disulfonate (AQDS) (25.2 s⁻¹) was observed as compared to that with Fe(III) citrate (2.9 s⁻¹). The results, coupled with previous localization and gene deletion studies, suggest that OmcS is well-suited to play an important role in extracellular electron transfer.


Assuntos
Grupo dos Citocromos c/química , Geobacter/enzimologia , Ferro/metabolismo , Dicroísmo Circular , Grupo dos Citocromos c/isolamento & purificação , Grupo dos Citocromos c/metabolismo , Heme/metabolismo , Cinética , Peso Molecular , Oxirredução , Solubilidade
3.
Microbiology (Reading) ; 154(Pt 5): 1422-1435, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18451051

RESUMO

Previous studies have shown that Geobacter sulfurreducens requires the outer-membrane, multicopper protein OmpB for Fe(III) oxide reduction. A homologue of OmpB, designated OmpC, which is 36 % similar to OmpB, has been discovered in the G. sulfurreducens genome. Deletion of ompC inhibited reduction of insoluble, but not soluble Fe(III). Analysis of multiple Geobacter and Pelobacter genomes, as well as in situ Geobacter, indicated that genes encoding multicopper proteins are conserved in Geobacter species but are not found in Pelobacter species. Levels of ompB transcripts were similar in G. sulfurreducens at different growth rates in chemostats and during growth on a microbial fuel cell anode. In contrast, ompC transcript levels increased at higher growth rates in chemostats and with increasing current production in fuel cells. Constant levels of Geobacter ompB transcripts were detected in groundwater during a field experiment in which acetate was added to the subsurface to promote in situ uranium bioremediation. In contrast, ompC transcript levels increased during the rapid phase of growth of Geobacter species following addition of acetate to the groundwater and then rapidly declined. These results demonstrate that more than one multicopper protein is required for optimal Fe(III) oxide reduction in G. sulfurreducens and suggest that, in environmental studies, quantifying OmpB/OmpC-related genes could help alleviate the problem that Pelobacter genes may be inadvertently quantified via quantitative analysis of 16S rRNA genes. Furthermore, comparison of differential expression of ompB and ompC may provide insight into the in situ metabolic state of Geobacter species in environments of interest.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Eletrodos/microbiologia , Compostos Férricos/metabolismo , Perfilação da Expressão Gênica , Geobacter/genética , Geobacter/metabolismo , Microbiologia do Solo , Acetatos/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Deleção de Genes , Geobacter/crescimento & desenvolvimento , Dados de Sequência Molecular , Oxirredução , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Urânio/metabolismo
4.
Microb Ecol ; 55(3): 489-99, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17786505

RESUMO

The possibility of quantifying in situ levels of transcripts for dissimilatory (bi)sulfite reductase (dsr) genes to track the activity of sulfate-reducing microorganisms in petroleum-contaminated marine harbor sediments was evaluated. Phylogenetic analysis of the cDNA generated from mRNA for a ca. 1.4 kbp portion of the contiguous dsrA and dsrB genes suggested that Desulfosarcina species, closely related to cultures known to anaerobically oxidize aromatic hydrocarbons, were active sulfate reducers in the sediments. The levels of dsrA transcripts (per mug total mRNA) were quantified in sediments incubated anaerobically at the in situ temperature as well as in sediments incubated at higher temperatures and/or with added acetate to increase the rate of sulfate reduction. Levels of dsrA transcripts were low when there was no sulfate reduction because the sediments were depleted of sulfate or if sulfate reduction was inhibited with added molybdate. There was a direct correlation between dsrA transcript levels and rates of sulfate reduction when sulfate was at ca. 10 mM in the various sediment treatments, but it was also apparent that within a given sediment, dsrA levels increased over time as long as sulfate was available, even when sulfate reduction rates did not increase. These results suggest that phylogenetic analysis of dsr transcript sequences may provide insight into the active sulfate reducers in marine sediments and that quantifying levels of dsrA transcripts can indicate whether sulfate reducers are active in particular sediment. Furthermore, it may only be possible to use dsrA transcript levels to compare the relative rates of sulfate reduction in sediments when sulfate concentrations, and possibly other environmental conditions, are comparable.


Assuntos
Desulfitobacterium/isolamento & purificação , Expressão Gênica , Sedimentos Geológicos/química , Sulfito de Hidrogênio Redutase/genética , Petróleo/microbiologia , RNA Mensageiro/isolamento & purificação , Anaerobiose , DNA Bacteriano/genética , DNA Ribossômico/genética , Desulfitobacterium/classificação , Desulfitobacterium/enzimologia , Desulfitobacterium/genética , Sedimentos Geológicos/microbiologia , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA