Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cancer Sci ; 114(9): 3759-3769, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439437

RESUMO

Past clinical trials of adjuvant therapy combined with interferon (IFN) alpha, fluorouracil, cisplatin, and radiation improved the 5-year survival rate of pancreatic ductal adenocarcinoma (PDAC). However, these trials also revealed the disadvantages of the systemic toxicity of IFN and insufficient delivery of IFN. To improve efficacy and tolerability, we have developed an oncolytic adenovirus-expressing IFN (IFN-OAd). Here, we evaluated IFN-OAd in combination with chemotherapy (gemcitabine + nab-paclitaxel) + radiation. Combination index (CI) analysis showed that IFN-OAd + chemotherapy + radiation was synergistic (CI <1). Notably, IFN-OAd + chemotherapy + radiation remarkably suppressed tumor growth and induced a higher number of tumor-infiltrating lymphocytes without severe side toxic effects in an immunocompetent and adenovirus replication-permissive hamster PDAC model. This is the first study to report that gemcitabine + nab-paclitaxel, the current first-line chemotherapy for PDAC, did not hamper virus replication in a replication-permissive immunocompetent model. IFN-OAd has the potential to overcome the barriers to clinical application of IFN-based therapy through its tumor-specific expression of IFN, induction of antitumor immunity, and sensitization with chemoradiation. Combining IFN-OAd with gemcitabine + nab-paclitaxel + radiation might be an effective and clinically beneficial treatment for PDAC patients.


Assuntos
Infecções por Adenoviridae , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Cricetinae , Animais , Humanos , Adenoviridae/genética , Linhagem Celular Tumoral , Replicação Viral , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Interferon-alfa , Paclitaxel , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Albuminas , Neoplasias Pancreáticas
2.
Cancer Lett ; 537: 215591, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398530

RESUMO

Addition of nab-paclitaxel to gemcitabine offers a survival benefit of only 6 weeks over gemcitabine alone at a cost of increased toxicity in PDAC. The goal of the present study is to evaluate the efficacy of Minnelide, a water-soluble prodrug of triptolide, in combination with the standard of care regimen for chemotherapy with the added advantage of reducing the doses of these drugs to minimize toxicity. Pancreatic cancer cell lines were implanted subcutaneously or orthotopically in athymic nude or C57BL/6J mice. Subsequently, animals were randomized and received saline or minnelide or full dose chemotherapy or low dose chemotherapy or minnelide in combination with low dose chemotherapy. Our results show that a combination of low doses of Minnelide with Gemcitabine + nab-paclitaxel significantly inhibited tumor progression and increased the survival of tumor-bearing mice in comparison with conventional chemotherapy alone. Moreover, combination therapy significantly reduced cancer-related morbidity by decreasing ascites and metastasis and effectively targeted both cancer and the associated stroma. In vitro studies with a combination of low doses of triptolide and paclitaxel significantly decreased the cell viability, increased apoptosis and led to significantly increased M-phase cell cycle arrest in various pancreatic cancer cell lines as compared to either drug alone. Our results show that Minnelide synergizes with conventional chemotherapy leading to a significant reduction in the doses of these toxic drugs, all the while achieving better efficacy in the treatment of PDAC. This combination effectively targeted both the cancer and the associated stromal components of pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Albuminas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Diterpenos , Compostos de Epóxi , Camundongos Endogâmicos C57BL , Organofosfatos , Paclitaxel , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fenantrenos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
3.
Cancer Res ; 81(15): 4001-4013, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990397

RESUMO

In pancreatic cancer, the robust fibroinflammatory stroma contributes to immune suppression and renders tumors hypoxic, altering intratumoral metabolic pathways and leading to poor survival. One metabolic enzyme activated during hypoxia is lactate dehydrogenase A (LDHA). As a result of its promiscuous activity under hypoxia, LDHA produces L-2 hydroxyglutarate (L-2HG), an epigenetic modifier, that regulates the tumor transcriptome. However, the role of L-2HG in remodeling the pancreatic tumor microenvironment is not known. Here we used mass spectrometry to detect L-2HG in serum samples from patients with pancreatic cancer, comprising tumor cells as well as stromal cells. Both hypoxic pancreatic tumors as well as serum from patients with pancreatic cancer accumulated L-2HG as a result of promiscuous activity of LDHA. This abnormally accumulated L-2HG led to H3 hypermethylation and altered gene expression, which regulated a critical balance between stemness and differentiation in pancreatic tumors. Secreted L-2HG inhibited T-cell proliferation and migration, suppressing antitumor immunity. In a syngeneic orthotopic model of pancreatic cancer, inhibition of LDH with GSK2837808A decreased L-2HG, induced tumor regression, and sensitized tumors to anti-PD1 therapy. In conclusion, hypoxia-mediated promiscuous activity of LDH produces L-2HG in pancreatic tumor cells, regulating the stemness-differentiation balance and contributing to immune evasion. Targeting LDH can be developed as a potential therapy to sensitize pancreatic tumors to checkpoint inhibitor therapy. SIGNIFICANCE: This study shows that promiscuous LDH activity produces L-2HG in pancreatic tumor and stromal cells, modulating tumor stemness and immune cell function and infiltration in the tumor microenvironment.


Assuntos
Hipóxia Celular/imunologia , Evasão da Resposta Imune/imunologia , Neoplasias Pancreáticas/imunologia , Animais , Diferenciação Celular , Feminino , Humanos , Camundongos , Transfecção
4.
Cell Death Dis ; 11(11): 967, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177492

RESUMO

Pancreatic adenocarcinoma is a devastating disease with an abysmal survival rate of 9%. A robust fibro-inflammatory and desmoplastic stroma, characteristic of pancreatic cancer, contribute to the challenges in developing viable therapeutic strategies in this disease. Apart from constricting blood vessels and preventing efficient drug delivery to the tumor, the stroma also contributes to the aggressive biology of cancer along with its immune-evasive microenvironment. In this study, we show that in pancreatic tumors, the developing stroma increases tumor initiation frequency in pancreatic cancer cells in vivo by enriching for CD133 + aggressive "stem-like" cells. Additionally, the stromal fibroblasts secrete IL6 as the major cytokine, increases glycolytic flux in the pancreatic tumor cells, and increases lactate efflux in the microenvironment via activation of the STAT signaling pathway. We also show that the secreted lactate favors activation of M2 macrophages in the tumor microenvironment, which excludes CD8 + T cells in the tumor. Our data additionally confirms that the treatment of pancreatic tumors with anti-IL6 antibody results in tumor regression as well as decreased CD133 + population within the tumor. Furthermore, inhibiting the lactate efflux in the microenvironment reduces M2 macrophages, and makes pancreatic tumors more responsive to anti-PD1 therapy. This suggests that stromal IL6 driven metabolic reprogramming plays a significant role in the development of an immune-evasive microenvironment. In conclusion, our study shows that targeting the metabolic pathways affected by stromal IL6 can make pancreatic tumors amenable to checkpoint inhibitor therapy.


Assuntos
Interleucina-6/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estromais/metabolismo , Antígeno AC133/metabolismo , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Ácido Láctico/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Células Estromais/patologia , Microambiente Tumoral
5.
Cancers (Basel) ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526919

RESUMO

Cancer is a major health problem. Most of the treatments exhibit systemic toxicity, as they are not targeted or specific to cancerous cells and tumors. Adenoviruses are very promising gene delivery vectors and have immense potential to deliver targeted therapy. Here, we review a wide range of strategies that have been tried, tested, and demonstrated to enhance the specificity of oncolytic viruses towards specific cancer cells. A combination of these strategies and other conventional therapies may be more effective than any of those strategies alone.

6.
J Clin Invest ; 130(1): 451-465, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31613799

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered to be a highly immunosuppressive and heterogenous neoplasm. Despite improved knowledge regarding the genetic background of the tumor and better understanding of the tumor microenvironment, immune checkpoint inhibitor therapy (targeting CTLA4, PD1, PDL1) has not been very successful against PDAC. The robust desmoplastic stroma, along with an extensive extracellular matrix (ECM) that is rich in hyaluronan, plays an integral role in this immune evasion. Hexosamine biosynthesis pathway (HBP), a shunt pathway of glycolysis, is a metabolic node in cancer cells that can promote survival pathways on the one hand and influence the hyaluronan synthesis in the ECM on the other. The rate-limiting enzyme of the pathway, glutamine-fructose amidotransferase 1 (GFAT1), uses glutamine and fructose 6-phosphate to eventually synthesize uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). In the current manuscript, we targeted this glutamine-utilizing enzyme by a small molecule glutamine analog (6-diazo-5-oxo-l-norleucine [DON]). Our results showed that DON decreased the self-renewal potential and metastatic ability of tumor cells. Further, treatment with DON decreased hyaluronan and collagen in the tumor microenvironment, leading to an extensive remodeling of the ECM and an increased infiltration of CD8+ T cells. Additionally, treatment with DON sensitized pancreatic tumors to anti-PD1 therapy, resulting in tumor regression and prolonged survival.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Diazo-Oxo-Norleucina/farmacologia , Hexosaminas/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptor de Morte Celular Programada 1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncogenesis ; 8(12): 68, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740660

RESUMO

Presence of quiescent, therapy evasive population often described as cancer stem cells (CSC) or tumor initiating cells (TIC) is often attributed to extreme metastasis and tumor recurrence. This population is typically enriched in a tumor as a result of microenvironment or chemotherapy induced stress. The TIC population adapts to this stress by turning on cell cycle arrest programs that is a "fail-safe" mechanism to prevent expansion of malignant cells to prevent further injury. Upon removal of the "stress" conditions, these cells restart their cell cycle and regain their proliferative nature thereby resulting in tumor relapse. Growth Arrest Specific 5 (GAS5) is a long-non-coding RNA that plays a vital role in this process. In pancreatic cancer, CD133+ population is a typical representation of the TIC population that is responsible for tumor relapse. In this study, we show for the first time that emergence of CD133+ population coincides with upregulation of GAS5, that reprograms the cell cycle to slow proliferation by inhibiting GR mediated cell cycle control. The CD133+ population further routed metabolites like glucose to shunt pathways like pentose phosphate pathway, that were predominantly biosynthetic in spite of being quiescent in nature but did not use it immediately for nucleic acid synthesis. Upon inhibiting GAS5, these cells were released from their growth arrest and restarted the nucleic acid synthesis and proliferation. Our study thus showed that GAS5 acts as a molecular switch for regulating quiescence and growth arrest in CD133+ population, that is responsible for aggressive biology of pancreatic tumors.

8.
Theranostics ; 9(12): 3410-3424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281487

RESUMO

Pancreatic adenocarcinoma (PDAC) claims more than 90% of the patients diagnosed with the disease owing to its aggressive biology that is manifested by high rate of tumor recurrence. Aberrant upregulation in the transcriptional activity of proteins involved in self-renewal like Sox2, Oct4 and Nanog is instrumental in these recurrence phenomena. In cancer, Sox2 is aberrantly "turned-on" leading to activation of downstream genes those results in relapse of the tumor. Molecular mechanisms that regulate the activity of Sox2 in PDAC are not known. In the current study, we have studied the how glycosylation of Sox2 by O-GlcNAc transferase (OGT) can affect its transcriptional activity and thus regulate self-renewal in cancer. Methods: RNA-Seq analysis of CRISPR-OGTi PDAC cells indicated a deregulation of differentiation and self-renewal pathways in PDAC. Pancreatic tumor burden following inhibition of OGT in vivo was done by using small molecule inhibitor, OSMI, on subcutaneous implantation of PDAC cells. Sox2 activity assay was performed by Dual Luciferase Reporter Assay kit. Results: Our study shows for the first time that in PDAC, glycosylation of Sox2 by OGT stabilizes it in the nucleus. Site directed mutagenesis of this site (S246A) prevents this modification. We further show that inhibition of OGT delayed initiation of pancreatic tumors by inhibition of Sox2. We also show that targeting OGT in vivo with a small molecule-inhibitor OSMI, results in decreased tumor burden in PDAC. Conclusion: Understanding this mechanism of SOX2 regulation by its glycosylation is expected to pave the way for development of novel therapy that has the potential to eradicate the cells responsible for tumor-recurrence.


Assuntos
Recidiva Local de Neoplasia/genética , Neoplasias Pancreáticas/patologia , Fatores de Transcrição SOXB1/genética , Adenocarcinoma/patologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Camundongos , Mutagênese Sítio-Dirigida , N-Acetilglucosaminiltransferases/metabolismo , Recidiva Local de Neoplasia/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA-Seq , Fatores de Transcrição SOXB1/metabolismo , Neoplasias Pancreáticas
9.
Cell Death Dis ; 10(2): 132, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755605

RESUMO

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) signaling have been shown to be dysregulated in multiple cancer types. Glucose regulatory protein 78 (GRP78), the master regulator of the UPR, plays a role in proliferation, invasion, and metastasis in cancer. Cancer stem cells (CSCs) make up a crucial component of the tumor heterogeneity in pancreatic cancer, as well as other cancers. "Stemness" in pancreatic cancer defines a population of cells within the tumor that have increased therapeutic resistance as well as survival advantage. In the current study, we investigated how GRP78 was responsible for maintaining "stemness" in pancreatic cancer thereby contributing to its aggressive biology. We determined that GRP78 downregulation decreased clonogenicity and self-renewal properties in pancreatic cancer cell lines in vitro. In vivo studies resulted in delayed tumor initiation frequency, as well as smaller tumor volume in the shGRP78 groups. Additionally, downregulation of GRP78 resulted in dysregulated fatty acid metabolism in pancreatic tumors as well as the cells. Further, our results showed that shGRP78 dysregulates multiple transcriptomic and proteomic pathways that involve DNA damage, oxidative stress, and cell death, that were reversed upon treatment with a ROS inhibitor, N-acetylcysteine. This study thus demonstrates for the first time that the heightened UPR in pancreatic cancer may be responsible for maintenance of the "stemness" properties in these cells that are attributed to aggressive properties like chemoresistance and metastasis.


Assuntos
Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Autorrenovação Celular/genética , Dano ao DNA/genética , Chaperona BiP do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Oxirredução , Estresse Oxidativo/genética , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transfecção , Carga Tumoral/genética , Resposta a Proteínas não Dobradas
10.
Cancer Lett ; 439: 101-112, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30290209

RESUMO

Metabolic rewiring is an integral part of tumor growth. Among metabolic pathways, the Mevalonic-Acid-Pathway (MVAP) plays a key role in maintaining membrane architecture through cholesterol synthesis, thereby affecting invasiveness. In the current study, we show for the first time that CD133Hi pancreatic tumor initiating cells (TIC) have increased expression of MVAP enzymes, cholesterol-content and Caveolin expression. Further, we show that CD133 in these cells is localized in the lipid-rafts (characterized by Cav-1-cholesterol association). Disruption of lipid-rafts by either depleting Cav-1 or by inhibiting MVAP by lovastatin decreased metastatic-potential and chemoresistance in CD133Hi cells while not affecting the CD133lo cells. Additionally, disruption of lipid-raft results in deregulation of FAK-signaling, decreasing invasiveness in pancreatic-TICs. Furthermore, this also inhibits ABC-transporter activity resulting in sensitizing TICs to standard chemotherapeutic agents. Repurposing existing drugs for new clinical applications is one of the safest and least resource intensive approaches to improve therapeutic options. In this context, our study is extremely timely as it shows that targeting lipid-rafts with statins can sensitize the normally resistant pancreatic TICHi-cells to standard chemotherapy and decrease metastasis, thereby defining a novel strategy for targeting the TICHi-PDAC.


Assuntos
Antígeno AC133/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Microdomínios da Membrana/metabolismo , Neoplasias Pancreáticas/genética , Antígeno AC133/metabolismo , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Nus , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Paclitaxel/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Mol Oncol ; 12(9): 1498-1512, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29738634

RESUMO

Chemoresistance is a major therapeutic challenge that plays a role in the poor statistical outcomes in pancreatic cancer. Unfolded protein response (UPR) is one of the homeostasis mechanisms in cancer cells that have been correlated with chemoresistance in a number of cancers including pancreatic cancer. In this study, we show that modulating glucose regulatory protein 78 (GRP78), the master regulator of the UPR, can have a profound effect on multiple pathways that mediate chemoresistance. Our study showed for the first time that silencing GRP78 can diminish efflux activity of ATP-binding cassette (ABC) transporters, and it can decrease the antioxidant response resulting in an accumulation of reactive oxygen species (ROS). We also show that these effects can be mediated by the activity of specificity protein 1 (SP1), a transcription factor overexpressed in pancreatic cancer. Thus, inhibition of SP1 negatively affects the UPR, deregulates the antioxidant response of NRF2, as well as ABC transporter activity by inhibiting GRP78-mediated ER homeostasis. Sp1 and NRF2 have been classified as nononcogene addiction genes and thus are imperative to understanding the molecular mechanism of resistance. These finding have huge clinical relevance as both Sp1 and GRP78 are overexpressed in pancreatic cancer patients and increased expression of these proteins is indicative of poor prognosis. Understanding how these proteins may regulate chemoresistance phenotype of this aggressive cancer may pave the way for development of efficacious therapy for this devastating disease.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Plicamicina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Progressão da Doença , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Expressão Gênica , Inativação Gênica , Homeostase , Humanos , Camundongos , Camundongos Nus , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/patologia , Plicamicina/farmacologia , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/metabolismo , Resposta a Proteínas não Dobradas
12.
Mol Cancer Res ; 16(1): 162-172, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970361

RESUMO

Tumor-initiating cells (TIC) have been implicated in pancreatic tumor initiation, progression, and metastasis. Among different markers that define this cell population within the tumor, the CD133+ cancer stem cell (CSC) population has reliably been described in these processes. CD133 expression has also been shown to functionally promote metastasis through NF-κB activation in this population, but the mechanism is unclear. In the current study, overexpression of CD133 increased expression and secretion of IL1ß (IL1B), which activates an autocrine signaling loop that upregulates NF-κB signaling, epithelial-mesenchymal transition (EMT), and cellular invasion. This signaling pathway also induces CXCR4 expression, which in turn is instrumental in imparting an invasive phenotype to these cells. In addition to the autocrine signaling of the CD133 secreted IL1ß, the tumor-associated macrophages (TAM) also produced IL1ß, which further activated this pathway in TICs. The functional significance of the TIC marker CD133 has remained elusive for a very long time; the current study takes us one step closer to understanding how the downstream signaling pathways in these cells regulate the functional properties of TICs.Implications: This study demonstrates the important role of tumor- and macrophage-derived IL1ß stimulation in pancreatic cancer. IL1 signaling is increased in cells with CD133 expression, leading to increased NF-kB activity, EMT induction, and invasion. Increased invasiveness via IL1ß stimulation is mediated by the upregulation of CXCR4 expression. The study highlights the importance of IL1-mediated signaling in TICs. Mol Cancer Res; 16(1); 162-72. ©2017 AACR.


Assuntos
Antígeno AC133/metabolismo , Interleucina-1/metabolismo , NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Comunicação Autócrina , Linhagem Celular Tumoral , Humanos , Camundongos , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Comunicação Parácrina , Receptores de Interleucina-1/metabolismo , Transdução de Sinais
13.
J Bioenerg Biomembr ; 50(3): 205-211, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29204729

RESUMO

Whether embryonic, hematopoietic or cancer stem cells, this metabolic reprogramming is dependent on the nutrient-status and bioenergetic pathways that is influenced by the micro-environmental niches like hypoxia. Thus, the microenvironment plays a vital role in determining the stem cell fate by inducing metabolic reprogramming. Under the influence of the microenvironment, like hypoxia, the stem cells have increased glucose and glutamine uptake which result in activation of hexosamine biosynthesis pathway (HBP) and increased O-GlcNAc Transferase (OGT). The current review is focused on understanding how HBP, a nutrient-sensing pathway (that leads to increased OGT activity) is instrumental in regulating self-renewal not only in embryonic and hematopoietic stem cells (ESC/HSC) but also in cancer stem cells.


Assuntos
Vias Biossintéticas , Autorrenovação Celular , N-Acetilglucosaminiltransferases/metabolismo , Nutrientes/metabolismo , Animais , Metabolismo Energético , Hexosaminas/biossíntese , Humanos
14.
Sci Rep ; 7(1): 1564, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28484232

RESUMO

Endoplasmic reticulum (ER) stress initiates an important mechanism for cell adaptation and survival, named the unfolded protein response (UPR). Severe or chronic/prolonged UPR can breach the threshold for survival and lead to cell death. There is a fundamental gap in knowledge on the molecular mechanism of how chronic ER stress is stimulated and leads to cell death in pancreatic ductal adenocarcinoma (PDAC). Our study shows that downregulating specificity protein 1 (Sp1), a transcription factor that is overexpressed in pancreatic cancer, activates UPR and results in chronic ER stress. In addition, downregulation of Sp1 results in its decreased binding to the ER stress response element present in the promoter region of Grp78, the master regulator of ER stress, thereby preventing homeostasis. We further show that inhibition of Sp1, as well as induction of ER stress, leads to lysosomal membrane permeabilization (LMP), a sustained accumulation of cytosolic calcium, and eventually cell death in pancreatic cancer.


Assuntos
Retículo Endoplasmático/metabolismo , Homeostase , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator de Transcrição Sp1/metabolismo , Cálcio/metabolismo , Morte Celular , Linhagem Celular Tumoral , Citosol/metabolismo , Regulação para Baixo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Humanos , Modelos Biológicos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...