Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 171: 116139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198959

RESUMO

Root canal treatment addresses infectious processes that require control. Occasionally, the radicular pulp is vital and inflamed, presenting a superficial infection. To preserve pulpal remnants, conservative procedures have gained favor, employing anti-inflammatory medications. This study investigated the effects of propolis (PRO), and copaiba oil-resin (COR) associated with hydrocortisone (H) and compared their impact to that of Otosporin® concerning cytotoxic and genotoxic activity, cytokine detection, and toxicity in the Galleria mellonella model. Human periodontal ligament fibroblasts (PDLFs) were exposed to drug concentrations and evaluated by the MTT assay. Associations were tested from concentrations that did not compromise cell density. Genotoxicity was evaluated through micronucleus counting, while cytokines IL-6 and TGF-ß1 were detected in the cell supernatant using ELISA. Molecular docking simulations were conducted, considering the major compounds identified in PRO, COR, and H. Increasing concentrations of PRO and COR were assessed for acute toxicity in Galleria mellonella model. Cellular assays were analyzed using one-way ANOVA followed by Tukey tests, while larval survivals were evaluated using the Log-rank (Mantel-Cox) test (α = 0.05). PRO and COR promoted PDLFs proliferation, even in conjunction with H. No changes in cell metabolism were observed concerning cytokine levels. The tested materials induce the release of AT1R, proliferating the PDFLs through interactions. PRO and COR had low toxicity in larvae, suggesting safety at tested levels. These findings endorse the potential of PRO and COR in endodontics and present promising applications across medical domains, such as preventive strategies in inflammation, shedding light on their potential development into commercially available drugs.


Assuntos
Anti-Infecciosos , Mariposas , Própole , Animais , Humanos , Própole/farmacologia , Simulação de Acoplamento Molecular , Ligamento Periodontal , Anti-Infecciosos/farmacologia , Larva , Citocinas/metabolismo , Fibroblastos
2.
Langmuir ; 39(19): 6657-6665, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126661

RESUMO

Micro- and nanotexturing on hard biomaterials have shown advantages for tissue engineering and antifouling applications. However, a growing number of studies have also shown that texturing may cause an increase in friction, demanding further research on the tribological effects of texturing under physiological conditions. This study investigates the tribological effects of micro- and nanopore patterns on hard hydrophilic silicon sliding against soft hydrophobic polydimethylsiloxane (PDMS) immersed in aqueous liquids with various viscosities, simulating the sliding of a textured implant surface against soft tissues. The experimental results show that silicon surfaces with pore textures at both micro- and nanoscale feature sizes confer a higher coefficient of friction (COF) than an untextured one. It is attributed to the texture's edge effect caused by the periodic pore patterns between the two sliding objects with a large difference in material stiffness. For the same solid area fraction, nanopored surfaces show a higher COF than micropored surfaces because of the significantly higher texture edge length per unit area. For micropored surfaces with a similar length of texture edge length per unit area, the COF increases more significantly with the increase in pore size because of the greater stress at the rims of the larger pores. The COFs of both micro- and nanoscale pores generally decrease from ∼10 to 0.1 with an increase in the surrounding aqueous viscosity, indicating the transition from a boundary lubrication to a mixed lubrication regime while mostly remaining in boundary lubrication. In contrast, the COF of an untextured surface decreases from ∼1 to 0.01, indicating that it mostly remains in the mixed lubrication regime while showing the tendency toward hydrodynamic lubrication. Compared to a hydrophilic hard probe sliding against a textured hydrophobic soft substrate, the hydrophobic soft probe sliding against a textured hydrophilic hard substrate produces a significantly higher COF under similar physiological conditions due to the larger edge effect.

4.
Biomedicines ; 10(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36551879

RESUMO

The objective of the present study was to investigate the pH, volumetric alteration, antimicrobial action, and effect on biofilm matrix polysaccharides of calcium hydroxide (CH) pastes with different vehicles available in endodontics: CH + propylene glycol (CHP), UltraCal XS®, Metapaste®, and Metapex®. The pH was analyzed at different time intervals using a pH meter. For volumetric alteration, a microtomographic assay was performed before and after immersion in water. Enterococcus faecalis was chosen for microbiological tests. The bacterial viability and extracellular matrix were quantified with direct contact evaluation (dentin blocks) and at the intratubular level (dentin cylinders) using LIVE/DEAD BacLight and Calcofluor White dyes via confocal laser scanning microscopy (CLSM). Kruskal-Wallis and Dunn's tests were used to analyze pH and direct contact assays, while one-way ANOVA and Tukey tests were used to analyze volumetric alteration and intratubular decontamination (α = 0.05). Higher pH values were obtained during the initial days. Volumetric alterations were similar in all groups. Lower bacterial viability was obtained for dentin blocks and cylinders when CH pastes were used. UltraCal XS and Metapex had lower values for the extracellular matrix. The pH of all CH pastes decreased with time and did not promote medium alkalization for up to 30 days. CH paste can reduce bacterial viability through direct contact and at an intratubular level; however, UltraCal XS and Metapex are involved with lower volumes of extracellular matrices.

5.
Indian J Urol ; 38(3): 210-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983107

RESUMO

Introduction: Human papillomavirus (HPV) is a known risk factor of penile cancer (PeCa). However, studies evaluating its true association are limited. In this study, we aimed to estimate HPV prevalence and its true association with PeCa in terms of molecular biological activities. Materials and Methods: This single-institutional prospective observational study was conducted between June 2016 and August 2019. We included 40 men with PeCa as a study group and 20 age-matched uncircumcised men who underwent circumcision for phimosis as a control group. Both the groups underwent deoxyribonucleic acid isolation for HPV subtyping followed by evaluation of relative E6/E7 messenger ribonucleic acid (mRNA) expression profile and relative telomerase activity in tissue samples. HPV-16 and -18 were categorized as high-risk, whereas HPV-6 and -11 were categorized as low-risk subtypes. Results: The mean (±standard deviation) age of PeCa was 51 ± 15.9 years. The majority of patients had stage II disease, and the most common procedure done was partial penectomy. The overall prevalence of HPV in PeCa was 42.5% (n = 17) as compared to 20% (n = 4) in controls. Among the subtypes, the most common subtype was HPV-16 noted in 33.3% (8/24) of cases, followed by HPV-18 in 29.2% (7/24) of cases. PeCa tissues had a significantly higher relative E7 mRNA expression for HPV-18 than the control group (P = 0.016). The mean relative telomerase activity was significantly higher in the PeCa tissues than the control group (138.66 vs. 14.46, P < 0.001). A significantly higher relative telomerase activity was noted in the PeCa tissues positive for high-risk HPV subtypes than controls (141.90 vs. 14.46, P = 0.0008), but not between high-risk HPV-positive and HPV-negative PeCa cases (141.90 vs. 137.03, P = 0.79). High-risk subtypes were not associated with tumor stage (P = 0.76) or lymph node metastasis (P = 0.816). Conclusions: HPV was associated in 42.5% of PeCa cases based on our experience from a single institution. PeCa tissues had a higher relative E7 mRNA expression for HPV-18 and relative telomerase activity as compared to controls suggesting their potential role as surrogate markers of virus-induced tumorigenesis.

6.
Polymers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578013

RESUMO

The proteins and polysaccharides of the extracellular matrix (ECM) provide architectural support as well as biochemical and biophysical instruction to cells. Decellularized, ECM hydrogels replicate in vivo functions. The ECM's elasticity and water retention renders it viscoelastic. In this study, we compared the viscoelastic properties of ECM hydrogels derived from the skin, lung and (cardiac) left ventricle and mathematically modelled these data with a generalized Maxwell model. ECM hydrogels from the skin, lung and cardiac left ventricle (LV) were subjected to a stress relaxation test under uniaxial low-load compression at a 20%/s strain rate and the viscoelasticity determined. Stress relaxation data were modelled according to Maxwell. Physical data were compared with protein and sulfated GAGs composition and ultrastructure SEM. We show that the skin-ECM relaxed faster and had a lower elastic modulus than the lung-ECM and the LV-ECM. The skin-ECM had two Maxwell elements, the lung-ECM and the LV-ECM had three. The skin-ECM had a higher number of sulfated GAGs, and a highly porous surface, while both the LV-ECM and the lung-ECM had homogenous surfaces with localized porous regions. Our results show that the elasticity of ECM hydrogels, but also their viscoelastic relaxation and gelling behavior, was organ dependent. Part of these physical features correlated with their biochemical composition and ultrastructure.

7.
Int J Mol Sci ; 22(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34576318

RESUMO

The extracellular matrix provides mechanical cues to cells within it, not just in terms of stiffness (elasticity) but also time-dependent responses to deformation (viscoelasticity). In this work, we determined the viscoelastic transformation of gelatine methacryloyl (GelMA) hydrogels caused by adipose tissue-derived stromal cells (ASCs) through mathematical modelling. GelMA-ASCs combination is of interest to model stem cell-driven repair and to understand cell-biomaterial interactions in 3D environments. Immortalised human ASCs were embedded in 5%, 10%, and 15% (w/v) GelMA hydrogels and evaluated for 14 d. GelMA had a concentration-dependent increase in stiffness, but cells decreased this stiffness over time, across concentrations. Viscoelastic changes in terms of stress relaxation increased progressively in 5% GelMA, while mathematical Maxwell analysis showed that the relative importance (Ri) of the fastest Maxwell elements increased proportionally. The 10% GelMA only showed differences at 7 d. In contrast, ASCs in 15% GelMA caused slower stress relaxation, increasing the Ri of the slowest Maxwell element. We conclude that GelMA concentration influenced the stiffness and number of Maxwell elements. ASCs changed the percentage stress relaxation and Ri of Maxwell elements transforming hydrogel viscoelasticity into a more fluid environment over time. Overall, 5% GelMA induced the most favourable ASC response.


Assuntos
Tecido Adiposo/metabolismo , Células Estromais/metabolismo , Materiais Biocompatíveis/química , Sobrevivência Celular/fisiologia , Módulo de Elasticidade/fisiologia , Matriz Extracelular/metabolismo , Humanos
8.
ACS Appl Mater Interfaces ; 13(35): 41473-41484, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34449208

RESUMO

The applications of hydrogels in tissue engineering as implants have rapidly grown in the last decade. However, the tribological properties of hydrogels under physiologically relevant conditions, especially those of textured hydrogels, have remained largely unknown due to the complexity of their mechanical and chemical properties. In this study, we experimentally investigated the tribological properties of micopored poly(2-hydroxyethyl methacrylate) (pHEMA) with the lateral pore dimensions varied compared to untextured pHEMA, the most commonly used hydrogel in ophthalmology, under physiologically relevant conditions. The pHEMA specimens were slid against a smooth glass curve under varying loads (6-60 mN, leading to an average contact pressure of 10-21 kPa) and sliding speeds (1-10 mm/s) in phosphate-buffered saline (pH 7.4) at 33 °C to mimic the physiological conditions in human eyes. At relatively low loads and sliding speeds (e.g., 6 mN and 1 mm/s), the micopored pHEMA did not reduce the dissipated frictional energy significantly. However, at relatively high loads and sliding speeds (e.g., 60 mN and 100 mm/s), the micopored pHEMA resulted in significantly lower frictional energy (reduced by up to 68%) dissipation than the untextured pHEMA. The effect was more pronounced with the micropores with smaller dimensions. These are attributed to the greater amount and retentivity of the interfacial fluid supported by the free water squeezed out of the micropores with the smaller dimensions under the higher load and sliding speed. These results suggest that the use of micropore texturing on hydrogels in practice, such as for ocular applications, can be leveraged to reduce friction and wear under physiological conditions and hence lower the chance of inflammation near eye implants or keratoprosthesis.


Assuntos
Hidrogéis/química , Lubrificantes/química , Poli-Hidroxietil Metacrilato/química , Fricção/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Porosidade
9.
Sci Rep ; 10(1): 11855, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678286

RESUMO

Catheterization is a common medical operation to diagnose and treat cardiovascular diseases. The blood vessel lumen is coated with endothelial glycocalyx layer (EGL), which is important for the permeability and diffusion through the blood vessels wall, blood hemodynamics and mechanotransduction. However EGL's role in catheter-blood vessel friction is not explored. We use a porcine aorta to mimic the blood vessel and a catheter loop was made to rub in reciprocating sliding mode against it to understand the role of catheter loop curvature, stiffness, normal load, sliding speed and EGL on the friction properties. Trypsin treatment was used to cause a degradation of the EGL. Decrease in catheter loop stiffness and EGL degradation were the strongest factors which dramatically increased the coefficient of friction (COF) and frictional energy dissipation at the aorta-catheter interface. Increasing sliding speed caused an increase but increase in normal load first caused a decrease and then an increase in the COF and frictional energy. These results provide the basic data for safety of operation and damage control during catheterization in patients with degraded EGL.


Assuntos
Aorta/química , Endotélio Vascular/química , Glicocálix/química , Mecanotransdução Celular/fisiologia , Animais , Aorta/efeitos dos fármacos , Fenômenos Biomecânicos , Cateterismo/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Fricção , Glicocálix/efeitos dos fármacos , Hemodinâmica/fisiologia , Humanos , Permeabilidade , Suínos , Técnicas de Cultura de Tecidos , Tripsina/farmacologia , Dispositivos de Acesso Vascular/efeitos adversos
10.
ACS Appl Mater Interfaces ; 12(21): 23726-23736, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32347093

RESUMO

Biomaterials employed in the articular joint cavity, such as polycarbonate urethane (PCU) for meniscus replacement, lack of lubrication ability, leading to pain and tissue degradation. We present a nanostructured adhesive coating based on dopamine-modified hyaluronan (HADN) and poly-lysine (PLL), which can reestablish boundary lubrication between the cartilage and biomaterial. Lubrication restoration takes place without the need of exogenous lubricious molecules but through a novel strategy of recruitment of native lubricious molecules present in the surrounding milieu. The biomimetic adhesive coating PLL-HADN (78 nm thickness) shows a high adhesive strength (0.51 MPa) to PCU and a high synovial fluid responsiveness. The quartz crystal microbalance with dissipation monitoring shows the formation of a thick and softer layer when these coatings are brought in contact with the synovial fluid. X-ray photoelectron spectroscopy and ConA-Alexa staining show clear signs of lubricious protein (PRG4) recruitment on the PLL-HADN surface. Effective recruitment of a lubricious protein by PLL-HADN caused it to dissipate only one-third of the frictional energy as compared to bare PCU when rubbed against the cartilage. Histology shows that this reduction makes the PLL-HADN highly chondroprotective, whereas PLL-HA coatings still show signs of cartilage wear. Shear forces in the range of 0.07-0.1 N were able to remove ∼80% of the PRG4 from the PCU-PLL-HA but only 27% from the PCU-PLL-HADN. Thus, in this study, we have shown that surface recruitment and strong adsorption of biomacromolecules from the surrounding milieu is an effective biomaterial lubrication strategy. This opens up new possibilities for lubrication system reconstruction for medical devices.


Assuntos
Adesivos/química , Materiais Revestidos Biocompatíveis/química , Ácido Hialurônico/análogos & derivados , Polilisina/química , Proteoglicanas/metabolismo , Adsorção , Animais , Cartilagem Articular/metabolismo , Bovinos , Dopamina/análogos & derivados , Lubrificação , Proteoglicanas/química , Líquido Sinovial/metabolismo
11.
Springerplus ; 5(1): 861, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386310

RESUMO

BACKGROUND: Eco-friendly synthesis of nanoparticles is viewed as an alternative to the chemical method and initiated the use of microorganisms for synthesis. The present study has been designed to utilize plant pathogenic fungi Sclerotinia sclerotiorum MTCC 8785 strain for synthesis and optimization of silver nanoparticles (AgNPs) production as well as evaluation of antibacterial properties. The AgNPs were synthesized by reduction of aqueous silver nitrate (AgNO3) solution after incubation of 3-5 days at room temperature. The AgNPs were further characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Reaction parameters including media, fungal biomass, AgNO3 concentration, pH and temperature were further optimized for rapid AgNPs production. The antibacterial efficacy of AgNPs was evaluated against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 by disc diffusion and growth kinetics assay at the concentration determined by the minimum inhibitory concentration (MIC). RESULTS: AgNPs synthesis was initially marked by the change in colour from pale white to brown and was confirmed by UV-Vis spectroscopy. Optimization studies showed that potato dextrose broth (PDB) media, 10 g of biomass, addition of 2 mM AgNO3, pH 11 and 80 °C temperature resulted in enhanced AgNPs synthesis through extracellular route. TEM data revealed spherical shape AgNPs with size in the range of 10 nm. Presence of proteins capped to AgNPs was confirmed by FTIR. AgNPs showed antibacterial activity against E. coli and S. aureus at 100 ppm concentration, corresponding MIC value. CONCLUSION: S. sclerotiorum MTCC 8785 mediated AgNPs was synthesized rapidly under optimized conditions, which showed antibacterial activity.

12.
Environ Sci Pollut Res Int ; 21(19): 11603-4, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24705894

RESUMO

The National Seminar on Sustainable Water Resource Management in Era of Changing Climate (NSWRM-2014) on 10-11 January 2014 organised by the Institute of Environment and Sustainable Development and Environmental Science and Technology, Banaras Hindu University, witnessed the presence of experts from environmentalists, industrialists and experts on water resources and its management. The deliberations and scientific discussions led to the conclusion that it is not just the resource but the natural capacity to sustain it that requires monitoring, understanding and stewardship. The focus of governance in India needs to move at a faster pace from conventional methods of sector-based water management to more integrated approach for sustainable water resource management. It is more of the people participation that is the future key towards sustainable water resource management in India.


Assuntos
Mudança Climática , Recursos Hídricos , Conservação dos Recursos Naturais , Água Doce , Humanos
13.
Biomaterials ; 28(12): 2122-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17258314

RESUMO

Pin tract infections of external fixators used in orthopaedic reconstructive bone surgery are serious complications that can eventually lead to periostitis and osteomyelitis. In vitro experiments have demonstrated that bacteria adhering to stainless steel in a biofilm mode of growth detach under the influence of small electric currents, while remaining bacteria become less viable upon current application. Therefore, we have investigated whether a 100microA electric current can prevent signs of clinical infection around percutaneous pins, implanted in the tibia of goats. Three pins were inserted into the lateral right tibia of nine goats, of which one served for additional frame support. Two pins were infected with a Staphylococcus epidermidis strain of which one pin was subjected to electric current, while the other pin was used as control. Pin sites were examined daily. The wound electrical resistance decreased with worsening of the infection from a dry condition to a purulent stage. After 21 days, animals were sacrificed and the pins taken out. Infection developed in 89% of the control pin sites, whereas only 11% of the pin sites in the current group showed infection. These results show that infection of percutaneous pin sites of external fixators in reconstructive bone surgery can be prevented by the application of a small DC electric current.


Assuntos
Eletricidade , Fixadores Externos , Modelos Animais , Modelos Biológicos , Aço Inoxidável , Infecção da Ferida Cirúrgica/prevenção & controle , Animais , Eletrodos , Cabras , Staphylococcus epidermidis/isolamento & purificação , Infecção da Ferida Cirúrgica/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...