Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 119: 111178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640981

RESUMO

STAT1 (Signal Transducer and Activator of Transcription 1), belongs to the STAT protein family, essential for cytokine signaling. It has been reported to have either context dependent oncogenic or tumor suppressor roles in different tumors. Earlier, we demonstrated that Glioblastoma multiforme (GBMs) overexpressing FAT1, an atypical cadherin, had poorer outcomes. Overexpressed FAT1 promotes pro-tumorigenic inflammation, migration/invasion by downregulating tumor suppressor gene, PDCD4. Here, we demonstrate that STAT1 is a novel mediator downstream to FAT1, in downregulating PDCD4 in GBMs. In-silico analysis of GBM databases as well as q-PCR analysis in resected GBM tumors showed positive correlation between STAT1 and FAT1 mRNA levels. Kaplan-Meier analysis showed poorer survival of GBM patients having high FAT1 and STAT1 expression. SiRNA-mediated knockdown of FAT1 decreased STAT1 and increased PDCD4 expression in glioblastoma cells (LN229 and U87MG). Knockdown of STAT1 alone resulted in increased PDCD4 expression. In silico analysis of the PDCD4 promoter revealed four putative STAT1 binding sites (Site1-Site4). ChIP assay confirmed the binding of STAT1 to site1. ChIP-PCR revealed decrease in the binding of STAT1 on the PDCD4 promoter after FAT1 knockdown. Site directed mutagenesis of Site1 resulted in increased PDCD4 luciferase activity, substantiating STAT1 mediated PDCD4 inhibition. EMSA confirmed STAT1 binding to the Site 1 sequence. STAT1 knockdown led to decreased expression of pro-inflammatory cytokines and EMT markers, and reduced migration/invasion of GBM cells. This study therefore identifies STAT1 as a novel downstream mediator of FAT1, promoting pro-tumorigenic activity in GBM, by suppressing PDCD4 expression.


Assuntos
Proteínas Reguladoras de Apoptose , Caderinas , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Proteínas de Ligação a RNA , Fator de Transcrição STAT1 , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Caderinas/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Regiões Promotoras Genéticas/genética , Movimento Celular , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
3.
iScience ; 26(9): 107579, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37649696

RESUMO

The structural and characteristic features of HIV-1 broadly neutralizing antibodies (bnAbs) from chronically infected pediatric donors are currently unknown. Herein, we characterized a heavy chain matured HIV-1 bnAb 44m, identified from a pediatric elite-neutralizer. Interestingly, in comparison to its wild-type AIIMS-P01 bnAb, 44m exhibited moderately higher level of somatic hypermutations of 15.2%. The 44m neutralized 79% of HIV-1 heterologous viruses (n = 58) tested, with a geometric mean IC50 titer of 0.36 µg/mL. The cryo-EM structure of 44m Fab in complex with fully cleaved glycosylated native-like BG505.SOSIP.664.T332N gp140 envelope trimer at 4.4 Å resolution revealed that 44m targets the V3-glycan N332-supersite and GDIR motif to neutralize HIV-1 with improved potency and breadth, plausibly attributed by a matured heavy chain as compared to that of wild-type AIIMS-P01. This study further improves our understanding on pediatric HIV-1 bnAbs and structural basis of broad HIV-1 neutralization by 44m may be useful blueprint for vaccine design in future.

4.
Nat Commun ; 11(1): 4409, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879304

RESUMO

Broadly neutralizing antibodies (bnAbs) develop in a subset of HIV-1 infected individuals over 2-3 years of infection. Infected infants develop plasma bnAbs frequently and as early as 1-year post-infection suggesting factors governing bnAb induction in infants are distinct from adults. Understanding viral characteristics in infected infants with early bnAb responses will provide key information about antigenic triggers driving B cell maturation pathways towards induction of bnAbs. Herein, we evaluate the presence of plasma bnAbs in a cohort of 51 HIV-1 clade-C infected infants and identify viral factors associated with early bnAb responses. Plasma bnAbs targeting V2-apex on the env are predominant in infant elite and broad neutralizers. Circulating viral variants in infant elite neutralizers are susceptible to V2-apex bnAbs. In infant elite neutralizers, multivariant infection is associated with plasma bnAbs targeting diverse autologous viruses. Our data provides information supportive of polyvalent vaccination approaches capable of inducing V2-apex bnAbs against HIV-1.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Estudos de Coortes , Feminino , HIV-1/imunologia , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas , Masculino , Vacinação
5.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669335

RESUMO

The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is the sole target of broadly neutralizing antibodies (bnAbs). Several mechanisms, such as the acquisition of mutations, variability of the loop length, and alterations in the glycan pattern, are employed by the virus to shield neutralizing epitopes on Env to sustain survival and infectivity within the host. The identification of mutations that lead to viral evasion of the host immune response is essential for the optimization and engineering of Env-based trimeric immunogens. Here, we report a rare leucine-to-phenylalanine escape mutation (L184F) at the base of hypervariable loop 2 (population frequency of 0.0045%) in a 9-month-old perinatally HIV-1-infected infant broad neutralizer. The L184F mutation altered the trimer conformation by modulating intramolecular interactions stabilizing the trimer apex and led to viral escape from autologous plasma bnAbs and known N160 glycan-targeted bnAbs. The L184F amino acid change led to the acquisition of a relatively open trimeric conformation, often associated with tier 1 HIV-1 isolates and increased susceptibility to neutralization by polyclonal plasma antibodies of weak neutralizers. While there was no impact of the L184F mutation on free virus transmission, a reduction in cell-to-cell transmission was observed. In conclusion, we report a naturally selected viral mutation, L184F, that influenced a change in the conformation of the Env trimer apex as a mechanism of escape from contemporaneous plasma V2 apex-targeted nAbs. Further studies should be undertaken to define viral mutations acquired during natural infection, to escape selection pressure exerted by bnAbs, to inform vaccine design and bnAb-based therapeutic strategies.IMPORTANCE The design of HIV-1 envelope-based immunogens capable of eliciting broadly neutralizing antibodies (bnAbs) is currently under active research. Some of the most potent bnAbs target the quaternary epitope at the V2 apex of the HIV-1 Env trimer. By studying naturally circulating viruses from a perinatally HIV-1-infected infant with plasma neutralizing antibodies targeted to the V2 apex, we identified a rare leucine-to-phenylalanine substitution, in two out of six functional viral clones, that destabilized the trimer apex. This single-amino-acid alteration impaired the interprotomeric interactions that stabilize the trimer apex, resulting in an open trimer conformation and escape from broadly neutralizing autologous plasma antibodies and known V2 apex-directed bnAbs, thereby favoring viral evasion of the early bnAb response of the infected host. Defining the mechanisms by which naturally occurring viral mutations influence the sensitivity of HIV-1 to bnAbs will provide information for the development of vaccines and bnAbs as anti-HIV-1 reagents.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Infecções por HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Mutação , Proteínas do Envelope Viral/genética , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , Humanos , Lactente , Vacinas , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
6.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31217240

RESUMO

Broad and potent neutralizing antibodies (bnAbs) with multiple epitope specificities evolve in HIV-1-infected children. Herein, we studied two antiretroviral-naive chronically HIV-1 clade C-infected monozygotic pediatric twins, AIIMS_329 and AIIMS_330, with potent plasma bnAbs. Elite plasma neutralizing activity was observed since the initial sampling at 78 months of age in AIIMS_330 and persisted throughout, while in AIIMS_329 it was seen at 90 months of age, after which the potency decreased over time. We evaluated potential viral characteristics associated with the varied immune profiles by generating single genome-amplified pseudoviruses. The AIIMS_329 viruses generated from the 90-month time point were neutralization sensitive to bnAbs and contemporaneous plasma antibodies, while viruses from the 112-month and 117-month time points were resistant to most bnAbs and contemporaneous plasma. AIIMS_329 viruses developed resistance to plasma neutralizing antibodies (nAbs) plausibly by N160 glycan loss and V1 and V4 loop lengthening. The viruses generated from AIIMS_330 (at 90 and 117 months) showed varied susceptibility to bnAbs and autologous contemporaneous plasma antibodies, while the viruses of the 112-month time point, at which the plasma nAb specificities mapped to the V2 glycan, V3 glycan, and CD4 binding site (CD4bs), were resistant to contemporaneous plasma antibodies as well as to most bnAbs. Chimeric viruses were constructed from 90-month-time-point PG9-sensitive AIIMS_329 and AIIMS_330 viruses with swapped V1V2 regions of their respective evolved viruses (at 112 and 117 months), which led to higher resistance to neutralization by PG9 and autologous plasma antibodies. We observed the evolution of a viral pool in the AIIMS_330 donor comprising plasma antibody neutralization-sensitive or -resistant diverse autologous viruses that may have contributed to the development and maintenance of elite neutralizing activity.IMPORTANCE Herein, we report the longitudinal development of bnAbs in a pair of chronically HIV-1 clade C-infected monozygotic pediatric twins, AIIMS_329 and AIIMS_330, who acquired the infection by vertical transmission. The plasma from both donors, sharing a similar genetic makeup and infecting virus, showed the evolvement of bnAbs targeting common epitopes in the V2 and V3 regions of the envelope, suggesting that bnAb development in these twins may perhaps be determined by specific sequences in the shared virus that can guide the development of immunogens aimed at eliciting V2 and V3 bNAbs. Characterization of the neutralization-sensitive and -resistant viruses coevolving with bNAbs in the contemporaneous AIIMS_330 plasma provides information toward understanding the viral alterations that may have contributed to the development of resistance to bnAbs. Further longitudinal studies in more monozygotic and dizygotic twin pairs will help in delineating the role of host and viral factors that may contribute to the development of bnAbs.


Assuntos
Anticorpos Neutralizantes/sangue , Doenças em Gêmeos/virologia , Infecções por HIV/imunologia , HIV-1/imunologia , Criança , Progressão da Doença , Doenças em Gêmeos/imunologia , Epitopos/metabolismo , Anticorpos Anti-HIV/sangue , Humanos , Estudos Longitudinais , Gêmeos Monozigóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...