Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 72(1): 19-32, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256836

RESUMO

Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC), originally identified to be a lipid droplet-associated protein in adipocytes, positively associates with insulin sensitivity. Recently, we discovered that it is expressed abundantly in human endothelial cells and regulates vascular function. The current study was designed to characterize the physiological effects and molecular actions of endothelial CIDEC in the control of vascular phenotype and whole-body glucose homeostasis. To achieve this, we generated a humanized mouse model expressing endothelial-specific human CIDEC (E-CIDECtg). E-CIDECtg mice exhibited protection against high-fat diet-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, these mice displayed improved insulin signaling and endothelial nitric oxide synthase activation, enhanced endothelium-dependent vascular relaxation, and improved vascularization of adipose tissue, skeletal muscle, and heart. Mechanistically, we identified a novel interplay of CIDEC-vascular endothelial growth factor A (VEGFA)-vascular endothelial growth factor receptor 2 (VEGFR2) that reduced VEGFA and VEGFR2 degradation, thereby increasing VEGFR2 activation. Overall, our results demonstrate a protective role of endothelial CIDEC against obesity-induced metabolic and vascular dysfunction, in part, by modulation of VEGF signaling. These data suggest that CIDEC may be investigated as a potential future therapeutic target for mitigating obesity-related cardiometabolic disease.


Assuntos
Resistência à Insulina , Fator A de Crescimento do Endotélio Vascular , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Obesidade/metabolismo , Endotélio/metabolismo
2.
J Biol Chem ; 298(9): 102347, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963433

RESUMO

Cell death-inducing DNA fragmentation factor-like effector C (CIDEC) expression in adipose tissue positively correlates with insulin sensitivity in obese humans. Further, E186X, a single-nucleotide CIDEC variant is associated with lipodystrophy, hypertriglyceridemia, and insulin resistance. To establish the unknown mechanistic link between CIDEC and maintenance of systemic glucose homeostasis, we generated transgenic mouse models expressing CIDEC (Ad-CIDECtg) and CIDEC E186X variant (Ad-CIDECmut) transgene specifically in the adipose tissue. We found that Ad-CIDECtg but not Ad-CIDECmut mice were protected against high-fat diet-induced glucose intolerance. Furthermore, we revealed the role of CIDEC in lipid metabolism using transcriptomics and lipidomics. Serum triglycerides, cholesterol, and low-density lipoproteins were lower in high-fat diet-fed Ad-CIDECtg mice compared to their littermate controls. Mechanistically, we demonstrated that CIDEC regulates the enzymatic activity of adipose triglyceride lipase via interacting with its activator, CGI-58, to reduce free fatty acid release and lipotoxicity. In addition, we confirmed that CIDEC is indeed a vital regulator of lipolysis in adipose tissue of obese humans, and treatment with recombinant CIDEC decreased triglyceride breakdown in visceral human adipose tissue. Our study unravels a central pathway whereby adipocyte-specific CIDEC plays a pivotal role in regulating adipose lipid metabolism and whole-body glucose homeostasis. In summary, our findings identify human CIDEC as a potential 'drug' or a 'druggable' target to reverse obesity-induced lipotoxicity and glucose intolerance.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Animais , Colesterol , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados , Glucose , Intolerância à Glucose/genética , Intolerância à Glucose/prevenção & controle , Humanos , Resistência à Insulina/genética , Lipase/genética , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Camundongos , Nucleotídeos/metabolismo , Obesidade/genética , Proteínas/metabolismo , Transgenes , Triglicerídeos
3.
Am J Physiol Endocrinol Metab ; 322(4): E331-E343, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157807

RESUMO

Fsp27 was previously identified as a lipid droplet-associated protein in adipocytes. Various studies have shown that it plays a role in the regulation of lipid homeostasis in adipose tissue and liver. However, its function in muscle, which also accumulate and metabolize fat, remains completely unknown. Our present study identifies a novel role of Fsp27 in muscle performance. Here, we demonstrate that Fsp27-/- and Fsp27+/- mice, both males and females, had severely impaired muscle endurance and exercise capacity compared with wild-type controls. Liver and muscle glycogen stores were similar among all groups fed or fasted, and before or after exercise. Reduced muscle performance in Fsp27-/- and Fsp27+/- mice was associated with severely decreased fat content in the muscle. Furthermore, results in heterozygous Fsp27+/- mice indicate that Fsp27 haploinsufficiency undermines muscle performance in both males and females. In summary, our physiological findings reveal that Fsp27 plays a critical role in muscular fat storage, muscle endurance, and muscle strength.NEW & NOTEWORTHY This is the first study identifying Fsp27 as a novel protein associated with muscle metabolism. The Fsp27-knockout model shows that Fsp27 plays a role in muscular-fat storage, muscle endurance, and muscle strength, which ultimately impacts limb movement. In addition, our study suggests a potential metabolic paradox in which FSP27-knockout mice presumed to be metabolically healthy based on glucose utilization and oxidative metabolism are unhealthy in terms of exercise capacity and muscular performance.


Assuntos
Adipócitos , Gotículas Lipídicas , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Feminino , Gotículas Lipídicas/metabolismo , Masculino , Camundongos , Músculos/metabolismo , Proteínas/metabolismo
4.
ACS Nano ; 16(2): 2233-2248, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138811

RESUMO

Understanding the principles that guide the uptake of engineered nanomaterials (ENMs) by cells is of interest in biomedical and occupational health research. While evidence has started to accumulate on the role of membrane proteins in ENM uptake, the role of membrane lipid chemistry in regulating ENM endocytosis has remained largely unexplored. Here, we have addressed this issue by altering the plasma membrane lipid composition directly in live cells using a methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange method. Our observations, in an alveolar epithelial cell line and using silica nanoparticles, reveal that the lipid composition of the plasma membrane outer leaflet plays a significant role in ENM endocytosis and the intracellular fate of ENMs, by affecting nonspecific ENM diffusion into the cell, changing membrane fluidity, and altering the activity of scavenger receptors (SRs) involved in active endocytosis. These results have implications for understanding ENM uptake in different subsets of cells, depending on cell membrane lipid composition.


Assuntos
Nanoestruturas , Membrana Celular/metabolismo , Endocitose , Lipídeos de Membrana/metabolismo , Nanoestruturas/química , Receptores Depuradores/metabolismo
5.
Mol Cell Endocrinol ; 518: 111038, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966863

RESUMO

Growth hormone (GH) is a pleiotropic hormone that coordinates an array of physiological processes, including effects on bone, muscle, and fat, ultimately resulting in growth. Metabolically, GH promotes anabolic action in most tissues except adipose, where its catabolic action causes the breakdown of stored triglycerides into free fatty acids (FFA). GH antagonizes insulin action via various molecular pathways. Chronic GH secretion suppresses the anti-lipolytic action of insulin and increases FFA flux into the systemic circulation; thus, promoting lipotoxicity, which causes pathophysiological problems, including insulin resistance. In this review, we will provide an update on GH-stimulated adipose lipolysis and its consequences on insulin signaling in liver, skeletal muscle, and adipose tissue. Furthermore, we will discuss the mechanisms that contribute to the diabetogenic action of GH.


Assuntos
Hormônio do Crescimento/farmacologia , Insulina/metabolismo , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento Humano/farmacologia , Humanos , Resistência à Insulina/fisiologia , Lipólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Pediatr Endocrinol Rev ; 17(1): 4-16, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31599132

RESUMO

Growth hormone (GH) is a pleiotropic hormone that coordinates an array of physiological processes including growth and metabolism. GH promotes anabolic action in all tissues except adipose, where it catabolizes stored fat to release energy for the promotion of growth in other tissues. However, chronic stimulation of lipolysis by GH results in an increased flux of free fatty acids (FFAs) into systemic circulation. Hence, a sustained release of high levels of GH contributes significantly to the development of insulin resistance by antagonizing the anti-lipolytic action of insulin. The molecular pathways associated with the lipolytic effect of GH in adipose tissue however, remain elusive. Recent studies have provided molecular insights into GH-induced lipolysis and impairment of insulin signaling. This review discusses the physiological and metabolic actions of GH on adipose tissue as well as GH-mediated deregulation of the FSP27-PPARγ axis which alters adipose tissue homeostasis and contributes to the development of insulin resistance and Type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônio do Crescimento Humano , Resistência à Insulina , Lipólise , Tecido Adiposo/efeitos dos fármacos , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/fisiopatologia , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento Humano/farmacologia , Humanos , Lipólise/efeitos dos fármacos
7.
J Am Heart Assoc ; 8(11): e011431, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31433737

RESUMO

Background Pathophysiological mechanisms that connect obesity to cardiovascular disease are incompletely understood. FSP27 (Fat-specific protein 27) is a lipid droplet-associated protein that regulates lipolysis and insulin sensitivity in adipocytes. We unexpectedly discovered extensive FSP27 expression in human endothelial cells that is downregulated in association with visceral obesity. We sought to examine the functional role of FSP27 in the control of vascular phenotype. Methods and Results We biopsied paired subcutaneous and visceral fat depots from 61 obese individuals (body mass index 44±8 kg/m2, age 48±4 years) during planned bariatric surgery. We characterized depot-specific FSP27 expression in relation to adipose tissue microvascular insulin resistance, endothelial function and angiogenesis, and examined differential effects of FSP27 modification on vascular function. We observed markedly reduced vasodilator and angiogenic capacity of microvessels isolated from the visceral compared with subcutaneous adipose depots. Recombinant FSP27 and/or adenoviral FSP27 overexpression in human tissue increased endothelial nitric oxide synthase phosphorylation and nitric oxide production, and rescued vasomotor and angiogenic dysfunction (P<0.05), while siRNA-mediated FSP27 knockdown had opposite effects. Mechanistically, we observed that FSP27 interacts with vascular endothelial growth factor-A and exerts robust regulatory control over its expression. Lastly, in a subset of subjects followed longitudinally for 12±3 months after their bariatric surgery, 30% weight loss improved metabolic parameters and increased angiogenic capacity that correlated positively with increased FSP27 expression (r=0.79, P<0.05). Conclusions Our data strongly support a key role and functional significance of FSP27 as a critical endogenous modulator of human microvascular function that has not been previously described. FSP27 may serve as a previously unrecognized regulator of arteriolar vasomotor capacity and angiogenesis which are pivotal in the pathogenesis of cardiometabolic diseases linked to obesity.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Gordura Intra-Abdominal/irrigação sanguínea , Microvasos/metabolismo , Neovascularização Fisiológica , Obesidade/metabolismo , Gordura Subcutânea/irrigação sanguínea , Vasodilatação , Adiposidade , Adulto , Proteínas Reguladoras de Apoptose/genética , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Células Cultivadas , Feminino , Humanos , Masculino , Microvasos/fisiopatologia , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/complicações , Obesidade/fisiopatologia , Fosforilação , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Am J Physiol Endocrinol Metab ; 316(1): E34-E42, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325658

RESUMO

The lipolytic effects of growth hormone (GH) have been known for half a century and play an important physiological role for substrate metabolism during fasting. In addition, sustained GH-induced lipolysis is causally linked to insulin resistance. However, the underlying molecular mechanisms remain elusive. In the present study, we obtained experimental data in human subjects and used human adipose-derived stromal vascular cells (hADSCs) as a model system to elucidate GH-triggered molecular signaling that stimulates adipose tissue lipolysis and insulin resistance in human adipocytes. We discovered that GH downregulates the expression of fat-specific protein (FSP27), a negative regulator of lipolysis, by impairing the transcriptional ability of the master transcriptional regulator, peroxisome proliferator-activated receptor-γ (PPARγ) via MEK/ERK activation. Ultimately, GH treatment promotes phosphorylation of PPARγ at Ser273 and causes its translocation from nucleus to the cytosol. Surprisingly, FSP27 overexpression inhibited PPARγ Ser273 phosphorylation and promoted its nuclear retention. GH antagonist treatment had similar effects. Our study identifies a novel signaling mechanism by which GH transcriptionally induces lipolysis via the MEK/ERK pathway that acts along PPARγ-FSP27 in human adipose tissue.


Assuntos
Adipócitos Brancos/metabolismo , Hormônio do Crescimento Humano/metabolismo , Lipólise/genética , Sistema de Sinalização das MAP Quinases , PPAR gama/metabolismo , Proteínas/genética , Proteínas Reguladoras de Apoptose , Regulação da Expressão Gênica , Humanos , Técnicas In Vitro , Masculino , Fosforilação , Proteínas/metabolismo , Adulto Jovem
9.
J Endocrinol ; 239(3): 289-301, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400015

RESUMO

Growth hormone (GH) has long been known to stimulate lipolysis and insulin resistance; however, the molecular mechanisms underlying these effects are unknown. In the present study, we demonstrate that GH acutely induces lipolysis in cultured adipocytes. This effect is secondary to the reduced expression of a negative regulator of lipolysis, fat-specific protein 27 (FSP27; aka Cidec) at both the mRNA and protein levels. These effects are mimicked in vivo as transgenic overexpression of GH leads to a reduction of FSP27 expression. Mechanistically, we show GH modulation of FSP27 expression is mediated through activation of both MEK/ERK- and STAT5-dependent intracellular signaling. These two molecular pathways interact to differentially manipulate peroxisome proliferator-activated receptor gamma activity (PPARγ) on the FSP27 promoter. Furthermore, overexpression of FSP27 is sufficient to fully suppress GH-induced lipolysis and insulin resistance in cultured adipocytes. Taken together, these data decipher a molecular mechanism by which GH acutely regulates lipolysis and insulin resistance in adipocytes.


Assuntos
Adipócitos/metabolismo , Hormônio do Crescimento/fisiologia , Lipólise , Proteínas/metabolismo , Células 3T3-L1 , Animais , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Camundongos , PPAR gama/metabolismo , Fator de Transcrição STAT5/metabolismo
11.
Cancer Cell ; 17(4): 319-32, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20385358

RESUMO

High Gleason grade prostate carcinomas are aggressive, poorly differentiated tumors that exhibit diminished estrogen receptor beta (ERbeta) expression. We report that a key function of ERbeta and its specific ligand 5alpha-androstane-3beta,17beta-diol (3beta-adiol) is to maintain an epithelial phenotype and repress mesenchymal characteristics in prostate carcinoma. Stimuli (TGF-beta and hypoxia) that induce an epithelial-mesenchymal transition (EMT) diminish ERbeta expression, and loss of ERbeta is sufficient to promote an EMT. The mechanism involves ERbeta-mediated destabilization of HIF-1alpha and transcriptional repression of VEGF-A. The VEGF-A receptor neuropilin-1 drives the EMT by promoting Snail1 nuclear localization. Importantly, this mechanism is manifested in high Gleason grade cancers, which exhibit significantly more HIF-1alpha and VEGF expression, and Snail1 nuclear localization compared to low Gleason grade cancers.


Assuntos
Receptor beta de Estrogênio/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias da Próstata/prevenção & controle , Fatores de Transcrição/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Receptor beta de Estrogênio/fisiologia , Humanos , Masculino , Mesoderma/citologia , Mesoderma/fisiologia , Neoplasias da Próstata/patologia , Fatores de Transcrição da Família Snail , Fator de Crescimento Transformador beta/fisiologia
12.
Blood ; 113(24): 6172-81, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19246562

RESUMO

Mutations in NOTCH1 are frequently detected in patients with T-cell acute lymphoblastic leukemia (T-ALL) and in mouse T-ALL models. Treatment of mouse or human T-ALL cell lines in vitro with gamma-secretase inhibitors (GSIs) results in growth arrest and/or apoptosis. These studies suggest GSIs as potential therapeutic agents in the treatment of T-ALL. To determine whether GSIs have antileukemic activity in vivo, we treated near-end-stage Tal1/Ink4a/Arf+/- leukemic mice with vehicle or with a GSI developed by Merck (MRK-003). We found that GSI treatment significantly extended the survival of leukemic mice compared with vehicle-treated mice. Notch1 target gene expression was repressed and increased numbers of apoptotic cells were observed in the GSI-treated mice, demonstrating that Notch1 inhibition in vivo induces apoptosis. T-ALL cell lines also exhibit PI3K/mTOR pathway activation, indicating that rapamycin may also have therapeutic benefit. When GSIs are administered in combination with rapamycin, mTOR kinase activity is ablated and apoptosis induced. Moreover, GSI and rapamycin treatment inhibits human T-ALL growth and extends survival in a mouse xenograft model. This work supports the idea of targeting NOTCH1 in T-ALL and suggests that inhibition of the mTOR and NOTCH1 pathways may have added efficacy.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Óxidos S-Cíclicos/farmacologia , Modelos Animais de Doenças , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/metabolismo , Tiadiazóis/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Western Blotting , Proteínas de Transporte/genética , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Transgênicos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Proto-Oncogênicas/fisiologia , Receptor Notch1/genética , Transdução de Sinais , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Serina-Treonina Quinases TOR , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...