Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768719

RESUMO

The development of a dengue (DENV) vaccine remains challenging due to the heteroserotypic infection, which can result in a potentially deadly hemorrhagic fever or dengue shock syndrome, and only a tetravalent vaccine can overcome this issue. Here, we report the immunogenicity of DENV envelope protein domain 3 (ED3) from all four DENV serotypes (DENV1-4) in Swiss albino and BALB/c mice models. Firstly, we observed that despite having very similar sequences and structures, both the humoral and cellular immunogenicity of ED3s varied significantly, with strength ranging from DENV2 ED3 (2ED3)~3ED3 > 1ED3 > 4ED3, which was assessed through anti-ED3 IgG titers, and DENV1 ED3 (1ED3) > 2ED3~3ED3 > 4ED3 as determined by monitoring T-cell memory (CD44+CD62L+ T cells with IL-4 and IFN-γ expression). Secondly, anti-1ED3 sera cross-reacted with 2ED3 and 3ED3; anti-2ED3 and anti-3ED3 sera cross-reacted with each other, but anti-4ED3 was completely serotype-specific. The lack of reciprocity of anti-1ED3's cross-reaction was unanticipated. Such disparity in the ED3 responses and cross-reaction might underlie the appearance of hemorrhagic fever and dengue shock syndrome. Hence, the development of an ED3-based tetravalent subunit vaccine would require understanding the aforementioned disparities.


Assuntos
Vírus da Dengue , Dengue , Dengue Grave , Animais , Camundongos , Anticorpos Antivirais , Proteínas do Envelope Viral/química , Sorogrupo , Dengue/prevenção & controle
2.
SN Compr Clin Med ; 3(11): 2207-2213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368624

RESUMO

The study aimed to determine how frequently the adverse events of the COVISHIELD vaccine occur among the Bangladeshi population. This cross-sectional study was conducted at Sheikh Russel Gastroliver Institute and Hospital, Mohakhali, Dhaka, Bangladesh, in May 2021. The inclusion criteria were the adult populations who received the 2nd dose of the COVISHELD vaccine and had passed 28 days following the completion of the 2nd dose. Three hundred and five persons fulfilling the inclusion criteria were asked over the telephone-based on a predesigned questionnaire. The rates of adverse events were 54.1% and 41.3% after the 1st and 2nd dose of vaccine, respectively, and the difference was statistically significant (p < 0.001). Pain at the injection site was the most common adverse event (32.5% following the 1st dose and 27.9% following the 2nd dose). All of the symptoms were mild and lasted for about 2 days. Age and comorbidities were significantly associated with the adverse events (p < 0.001). Neither doses had any vaccine-related life-threatening adverse event nor had any symptoms related to vaccine-related blood clotting. Nineteen persons (6.2%) had been diagnosed with COVID-19 after the 1st dose of vaccination, and three (1%) persons had been diagnosed with COVID-19 after the 2nd dose of vaccination. As no significant life-threatening adverse event was observed, this study might help reduce the hesitancy for vaccination among the population and thus help reduce transmission of this highly contagious virus.

3.
Gene ; 575(1): 132-43, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26319513

RESUMO

Vancomycin-resistant Staphylococcus aureus (VRSA) is a Gram-positive, facultative aerobic bacterium which is evolved from the extensive exposure of Vancomycin to Methicillin resistant S. aureus (MRSA) that had become the most common cause of hospital and community-acquired infections. Due to the emergence of different antibiotic resistance strains, there is an exigency to develop novel drug targets to address the provocation of multidrug-resistant bacteria. In this study, in-silico genome subtraction methodology was used to design potential and pathogen specific drug targets against VRSA. Our study divulged 1987 proteins from the proteome of 34,549 proteins, which have no homologues in human genome after sequential analysis through CD-HIT and BLASTp. The high stringency analysis of the remaining proteins against database of essential genes (DEG) resulted in 169 proteins which are essential for S. aureus. Metabolic pathway analysis of human host and pathogen by KAAS at the KEGG server sorted out 19 proteins involved in unique metabolic pathways. 26 human non-homologous membrane-bound essential proteins including 4 which were also involved in unique metabolic pathway were deduced through PSORTb, CELLO v.2.5, ngLOC. Functional classification of uncharacterized proteins through SVMprot derived 7 human non-homologous membrane-bound hypothetical essential proteins. Study of potential drug target against Drug Bank revealed pbpA-penicillin-binding protein 1 and hypothetical protein MQW_01796 as the best drug target candidate. 2D structure was predicted by PRED-TMBB, 3D structure and functional analysis was also performed. Protein-protein interaction network of potential drug target proteins was analyzed by using STRING. The identified drug targets are expected to have great potential for designing novel drugs against VRSA infections and further screening of the compounds against these new targets may result in the discovery of novel therapeutic compounds that can be effective against Vancomycin resistant S. aureus.


Assuntos
Proteínas de Bactérias/genética , Bases de Dados de Proteínas , Sistemas de Liberação de Medicamentos , Análise de Sequência de Proteína , Infecções Estafilocócicas/genética , Staphylococcus aureus/genética , Resistência a Vancomicina/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo
4.
Interdiscip Sci ; 7(3): 257-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26223545

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a virus that manifests itself in viral infection with fever, cough, shortness of breath, renal failure and severe acute pneumonia, which often result in a fatal outcome. MERS-CoV has been shown to spread between people who are in close contact. Transmission from infected patients to healthcare personnel has also been observed and is irredeemable with present technology. Genetic studies on MERS-CoV have shown that ORF1ab encodes replicase polyproteins and play a foremost role in viral infection. Therefore, ORF1ab replicase polyprotein may be used as a suitable target for disease control. Viral activity can be controlled by RNA interference (RNAi) technology, a leading method for post transcriptional gene silencing in a sequence-specific manner. However, there is a genetic inconsistency in different viral isolates; it is a great challenge to design potential RNAi (miRNA and siRNA) molecules which can silence the respective target genes rather than any other viral gene simultaneously. In the current study, four effective miRNA and five siRNA molecules for silencing of nine different strains of MERS-CoV were rationally designed and corroborated using computational methods, which might lead to knockdown the activity of virus. siRNA and miRNA molecules were predicted against ORF1ab gene of different strains of MERS-CoV as effective candidate using computational methods. Thus, this method may provide an insight for the chemical synthesis of antiviral RNA molecule for the treatment of MERS-CoV, at genomic level.


Assuntos
Biologia Computacional/métodos , Inativação Gênica , MicroRNAs/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Interferente Pequeno/metabolismo , Algoritmos , Composição de Bases , Sequência de Bases , MicroRNAs/genética , Conformação de Ácido Nucleico , RNA Interferente Pequeno/genética , Termodinâmica
5.
In Silico Pharmacol ; 3(1): 7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26820892

RESUMO

PURPOSE: Ebola virus (EBOV) is such kind of virus which is responsible for 23,825 cases and 9675 deaths worldwide only in 2014 and with an average diseases fatality rate between 25 % and 90 %. Although, medical technology has tried to handle the problems, there is no Food and Drug Administration (FDA)-approved therapeutics or vaccines available for the prevention, post exposure, or treatment of Ebola virus disease (EVD). METHODS: In the present study, we used the immunoinformatics approach to design a potential epitope-based vaccine against the RNA-dependent RNA polymerase-L of EBOV. BioEdit v7.2.3 sequence alignment editor, Jalview v2 and CLC Sequence Viewer v7.0.2 were used for the initial sequence analysis for securing the conservancy from the sequences. Later the Immune Epitope Database and Analysis Resource (IEDB-AR) was used for the identification of T-cell and B-cellepitopes associated with type I and II major histocompatibility complex molecules analysis. Finally, the population coverage analysis was employed. RESULTS: The core epitope "FRYEFTAPF" was found to be the most potential one, with 100 % conservancy among all the strains of EBOV. It also interacted with both type I and II major histocompatibility complex molecules and is considered as nonallergenic in nature. Finally, with impressive cumulative population coverage of 99.87 % for the both MHC-I and MHC-II class throughout the world population was found for the proposed epitope. CONCLUSION: To end, the projected peptide gave us a solid stand to propose for vaccine consideration and that might be experimented for its potency in eliciting immunity through humoral and cell mediated immune responses in vitro and in vivo.

6.
Interdiscip Sci ; 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25519155

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a virus that manifests itself in viral infection with fever, cough, shortness of breath, renal failure and severe acute pneumonia, which often result in a fatal outcome. MERS-CoV has been shown to spread between people who are in close contact. Transmission from infected patients to healthcare personnel has also been observed and is irredeemable with present technology. Genetic studies on MERS-CoV have shown that ORF 1ab encodes replicase polyproteins and play a foremost role in viral infection. Therefore, ORF 1ab replicase polyprotein may be used as suitable target for disease control. Viral activity can be controlled by RNA interference (RNAi) technology, a leading method for post transcriptional gene silencing in a sequence specific manner. However, there is a genetic inconsistency in different viral isolates; it is a great challenge to design potential RNAi (miRNA and siRNA) molecules which can silence the respective target genes rather than any other viral gene simultaneously. In current study four effective miRNA and five siRNA molecules for silencing of nine different strains of MERS-CoV were rationally designed and corroborated using computational methods, which might lead to knockdown the activity of virus. siRNA and miRNA molecules were predicted against ORF1ab gene of different strains of MERS-CoV as effective candidate using computational methods. Thus, this method may provide an insight for the chemical synthesis of antiviral RNA molecule for the treatment of MERS-CoV, at genomic level.

7.
Interdiscip Sci ; 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373633

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a virus that manifests itself in viral infection with fever, cough, shortness of breath, renal failure and severe acute pneumonia, which often result in a fatal outcome. MERS-CoV has been shown to spread between people who are in close contact. Transmission from infected patients to healthcare personnel has also been observed and is irredeemable with present technology. Genetic studies on MERS-CoV have shown that ORF 1ab encodes replicase polyproteins and play a foremost role in viral infection. Therefore, ORF 1ab replicase polyprotein may be used as suitable target for disease control. Viral activity can be controlled by RNA interference (RNAi) technology, a leading method for post transcriptional gene silencing in a sequence specific manner. However, there is a genetic inconsistency in different viral isolates; it is a great challenge to design potential RNAi (miRNA and siRNA) molecules which can silence the respective target genes rather than any other viral gene simultaneously. In current study four effective miRNA and five siRNA molecules for silencing of nine different strains of MERS-CoV were rationally designed and corroborated using computational methods, which might lead to knockdown the activity of virus. siRNA and miRNA molecules were predicted against ORF1ab gene of different strains of MERS-CoV as effective candidate using computational methods. Thus, this method may provide an insight for the chemical synthesis of antiviral RNA molecule for the treatment of MERS-CoV, at genomic level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA