Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3567, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732630

RESUMO

Humans, and many other species, are host to diverse symbionts. It is often suggested that the mutual benefits of host-microbe relationships can alone explain cooperative evolution. Here, we evaluate this hypothesis with evolutionary modelling. Our model predicts that mutual benefits are insufficient to drive cooperation in systems like the human microbiome, because of competition between symbionts. However, cooperation can emerge if hosts can exert control over symbionts, so long as there are constraints that limit symbiont counter evolution. We test our model with genomic data of two bacterial traits monitored by animal immune systems. In both cases, bacteria have evolved as predicted under host control, tending to lose flagella and maintain butyrate production when host-associated. Moreover, an analysis of bacteria that retain flagella supports the evolution of host control, via toll-like receptor 5, which limits symbiont counter evolution. Our work puts host control mechanisms, including the immune system, at the centre of microbiome evolution.


Assuntos
Microbiota , Simbiose , Animais , Bactérias/genética , Evolução Biológica , Microbiota/genética , Filogenia
2.
mBio ; 13(2): e0339621, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343790

RESUMO

Bacteria exploit a variety of attack strategies to gain dominance within ecological niches. Prominent among these are contact-dependent inhibition (CDI), type VI secretion (T6SS), and bacteriocins. The cytotoxic endpoint of these systems is often the delivery of a nuclease to the cytosol. How such nucleases translocate across the cytoplasmic membrane of Gram-negative bacteria is unknown. Here, we identify a small, conserved, 15-kDa domain, which we refer to as the inner membrane translocation (IMT) domain, that is common to T6SS and bacteriocins and linked to nuclease effector domains. Through fluorescence microscopy assays using intact and spheroplasted cells, we demonstrate that the IMT domain of the Pseudomonas aeruginosa-specific bacteriocin pyocin G (PyoG) is required for import of the toxin nuclease domain to the cytoplasm. We also show that translocation of PyoG into the cytosol is dependent on inner membrane proteins FtsH, a AAA+ATPase/protease, and TonB1, the latter more typically associated with transport of bacteriocins across the outer membrane. Our study reveals that the IMT domain directs the cytotoxic nuclease of PyoG to cross the cytoplasmic membrane and, more broadly, has been adapted for the transport of other toxic nucleases delivered into Gram-negative bacteria by both contact-dependent and contact-independent means. IMPORTANCE Nuclease bacteriocins are potential antimicrobials for the treatment of antibiotic-resistant bacterial infections. While the mechanism of outer membrane translocation is beginning to be understood, the mechanism of inner membrane transport is not known. This study uses PyoG as a model nuclease bacteriocin and defines a conserved domain that is essential for inner membrane translocation and is widespread in other bacterial competition systems. Additionally, the presented data link two membrane proteins, FtsH and TonB1, with inner membrane translocation of PyoG. These findings point to the general importance of this domain to the cellular uptake mechanisms of nucleases delivered by otherwise diverse and distinct bacterial competition systems. The work is also of importance for the design of new protein antibiotics.


Assuntos
Bacteriocinas , Piocinas , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Transporte Biológico , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocinas/metabolismo , Piocinas/farmacologia
3.
Microbiology (Reading) ; 167(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33529149

RESUMO

The sixth Young Microbiologists Symposium on 'Microbe Signalling, Organisation and Pathogenesis' was scheduled to be held at the University of Southampton, UK, in late August 2020. However, due to the health and safety guidelines and travel restrictions as a response to the COVID-19 pandemic, the symposium was transitioned to a virtual format, a change embraced enthusiastically as the meeting attracted over 200 microbiologists from 40 countries. The event allowed junior scientists to present their work to a broad audience and was supported by the European Molecular Biology Organization, the Federation of European Microbiological Societies, the Society of Applied Microbiology, the Biochemical Society, the Microbiology Society and the National Biofilms Innovation Centre. Sessions covered recent advances in all areas of microbiology including: Secretion and transport across membranes, Gene regulation and signalling, Host-microbe interactions, and Microbial communities and biofilm formation. This report focuses on several of the highlights and exciting developments communicated during the talks and poster presentations.


Assuntos
Interações Hospedeiro-Patógeno , Interações Microbianas , Microbiologia/tendências , Biofilmes , Congressos como Assunto , Humanos , Reino Unido , Comunicação por Videoconferência
4.
J Mol Biol ; 432(13): 3869-3880, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32339530

RESUMO

Pseudomonas aeruginosa is a priority pathogen for the development of new antibiotics, particularly because multi-drug-resistant strains of this bacterium cause serious nosocomial infections and are the leading cause of death in cystic fibrosis patients. Pyocins, bacteriocins of P. aeruginosa, are potent and diverse protein antibiotics that are deployed during bacterial competition. Pyocins are produced by more than 90% of P. aeruginosa strains and may have utility as last resort antibiotics against this bacterium. In this study, we explore the antimicrobial activity of a newly discovered pyocin called pyocin G (PyoG). We demonstrate that PyoG has broad killing activity against a collection of clinical P. aeruginosa isolates and is active in a Galleria mellonella infection model. We go on to identify cell envelope proteins that are necessary for the import of PyoG and its killing activity. PyoG recognizes bacterial cells by binding to Hur, an outer-membrane TonB-dependent transporter. Both pyocin and Hur interact with TonB1, which in complex with ExbB-ExbD links the proton motive force generated across the inner membrane with energy-dependent pyocin translocation across the outer membrane. Inner-membrane translocation of PyoG is dependent on the conserved inner-membrane AAA+ ATPase/protease, FtsH. We also report a functional exploration of the PyoG receptor. We demonstrate that Hur can bind to hemin in vitro and that this interaction is blocked by PyoG, confirming the role of Hur in hemin acquisition.


Assuntos
Hemina/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Piocinas/farmacologia , ATPases Associadas a Diversas Atividades Celulares/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Proteínas de Membrana/genética , Ligação Proteica/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/patogenicidade , Piocinas/química
5.
J Bacteriol ; 201(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30510143

RESUMO

The outer membrane of Gram-negative bacteria presents a significant barrier for molecules entering the cell. Nevertheless, colicins, which are antimicrobial proteins secreted by Escherichia coli, can target other E. coli cells by binding to cell surface receptor proteins and activating their import, resulting in cell death. Previous studies have documented high rates of nonspecific resistance (insensitivity) of various E. coli strains toward colicins that is independent of colicin-specific immunity and is instead associated with lipopolysaccharide (LPS) in the outer membrane. This observation poses a contradiction: why do E. coli strains have colicin-expressing plasmids, which are energetically costly to retain, if cells around them are likely to be naturally insensitive to the colicin they produce? Here, using a combination of transposon sequencing and phenotypic microarrays, we show that colicin insensitivity of uropathogenic E. coli sequence type 131 (ST131) is dependent on the production of its O-antigen but that minor changes in growth conditions render the organism sensitive toward colicins. The reintroduction of O-antigen into E. coli K-12 demonstrated that it is the density of O-antigen that is the dominant factor governing colicin insensitivity. We also show, by microscopy of fluorescently labelled colicins, that growth conditions affect the degree of occlusion by O-antigen of outer membrane receptors but not the clustered organization of receptors. The result of our study demonstrate that environmental conditions play a critical role in sensitizing E. coli toward colicins and that O-antigen in LPS is central to this role.IMPORTANCEEscherichia coli infections can be a major health burden, especially with the organism becoming increasingly resistant to "last-resort" antibiotics such as carbapenems. Although colicins are potent narrow-spectrum antimicrobials with potential as future antibiotics, high levels of naturally occurring colicin insensitivity have been documented which could limit their efficacy. We identify O-antigen-dependent colicin insensitivity in a clinically relevant uropathogenic E. coli strain and show that this insensitivity can be circumvented by minor changes to growth conditions. The results of our study suggest that colicin insensitivity among E. coli organisms has been greatly overestimated, and as a consequence, colicins could in fact be effective species-specific antimicrobials targeting pathogenic E. coli such as uropathogenic E. coli (UPEC).


Assuntos
Antibacterianos/farmacologia , Colicinas/farmacologia , Farmacorresistência Bacteriana , Antígenos O/metabolismo , Escherichia coli Uropatogênica/efeitos dos fármacos , Elementos de DNA Transponíveis , Inativação Gênica , Metabolismo/efeitos dos fármacos , Análise em Microsséries , Testes de Sensibilidade Microbiana , Mutagênese Insercional , Antígenos O/genética , Fenótipo , Análise de Sequência de DNA , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Escherichia coli Uropatogênica/metabolismo
7.
Biochemistry ; 57(29): 4374-4381, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29949342

RESUMO

Protein bacteriocins are potent narrow spectrum antibiotics that exploit outer membrane porins to kill bacteria by poorly understood mechanisms. Here, we determine how colicins, bacteriocins specific for Escherichia coli, engage the trimeric porin OmpF to initiate toxin entry. The N-terminal ∼80 residues of the nuclease colicin ColE9 are intrinsically unstructured and house two OmpF binding sites (OBS1 and OBS2) that reside within the pores of OmpF and which flank an epitope that binds periplasmic TolB. Using a combination of molecular dynamics simulations, chemical trimerization, isothermal titration calorimetry, fluorescence microscopy, and single channel recording planar lipid bilayer measurements, we show that this arrangement is achieved by OBS2 binding from the extracellular face of OmpF, while the interaction of OBS1 occurs from the periplasmic face of OmpF. Our study shows how the narrow pores of oligomeric porins are exploited by colicin disordered regions for direction-specific binding, which ensures the constrained presentation of an activating signal within the bacterial periplasm.


Assuntos
Colicinas/metabolismo , Escherichia coli/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Porinas/metabolismo , Sítios de Ligação , Colicinas/química , Escherichia coli/química , Escherichia coli/citologia , Proteínas Intrinsicamente Desordenadas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Porinas/química , Ligação Proteica
8.
PLoS Comput Biol ; 13(7): e1005652, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715501

RESUMO

Bacteria exploit an arsenal of antimicrobial peptides and proteins to compete with each other. Three main competition systems have been described: type six secretion systems (T6SS); contact dependent inhibition (CDI); and bacteriocins. Unlike T6SS and CDI systems, bacteriocins do not require contact between bacteria but are diffusible toxins released into the environment. Identified almost a century ago, our understanding of bacteriocin distribution and prevalence in bacterial populations remains poor. In the case of protein bacteriocins, this is because of high levels of sequence diversity and difficulties in distinguishing their killing domains from those of other competition systems. Here, we develop a robust bioinformatics pipeline exploiting Hidden Markov Models for the identification of nuclease bacteriocins (NBs) in bacteria of which, to-date, only a handful are known. NBs are large (>60 kDa) toxins that target nucleic acids (DNA, tRNA or rRNA) in the cytoplasm of susceptible bacteria, usually closely related to the producing organism. We identified >3000 NB genes located on plasmids or on the chromosome from 53 bacterial species distributed across different ecological niches, including human, animals, plants, and the environment. A newly identified NB predicted to be specific for Pseudomonas aeruginosa (pyocin Sn) was produced and shown to kill P. aeruginosa thereby validating our pipeline. Intriguingly, while the genes encoding the machinery needed for NB translocation across the cell envelope are widespread in Gram-negative bacteria, NBs are found exclusively in γ-proteobacteria. Similarity network analysis demonstrated that NBs fall into eight groups each with a distinct arrangement of protein domains involved in import. The only structural feature conserved across all groups was a sequence motif critical for cell-killing that is generally not found in bacteriocins targeting the periplasm, implying a specific role in translocating the nuclease to the cytoplasm. Finally, we demonstrate a significant association between nuclease colicins, NBs specific for Escherichia coli, and virulence factors, suggesting NBs play a role in infection processes, most likely by enabling pathogens to outcompete commensal bacteria.


Assuntos
Proteínas de Bactérias/genética , Bacteriocinas/genética , Desoxirribonucleases/genética , Gammaproteobacteria/genética , Genoma Bacteriano/genética , Anti-Infecciosos , Proteínas de Bactérias/metabolismo , Simulação por Computador , Desoxirribonucleases/metabolismo , Gammaproteobacteria/enzimologia , Genoma Bacteriano/fisiologia , Cadeias de Markov , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética
9.
Nat Commun ; 7: 12194, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27432510

RESUMO

Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind the sigma factor σ(R) preventing its association with RNA polymerase, and that zinc plays a central role in maintaining this high-affinity complex. Oxidation of RsrA is limited by the rate of zinc release, which weakens the RsrA-σ(R) complex by accelerating its dissociation. The subsequent trigger disulfide, formed between specific combinations of RsrA's three zinc-binding cysteines, precipitates structural collapse to a compact state where all σ(R)-binding residues are sequestered back into its hydrophobic core, releasing σ(R) to activate transcription of anti-oxidant genes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Estresse Oxidativo , Fator sigma/antagonistas & inibidores , Sequência de Aminoácidos , Cisteína/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Oxirredução , Zinco/metabolismo
10.
J Mol Biol ; 427(17): 2852-66, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215615

RESUMO

How ultra-high-affinity protein-protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase-Im interaction is a model system for the study of high-affinity protein-protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase-Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase-ImS2 and pyocin AP41 DNase-ImAP41. These structures represent divergent DNase-Im subfamilies and are important in extending our understanding of protein-protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase-Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase-Immunity pairs that appear to underpin the split of this family into two distinct groups.


Assuntos
Complexos Multiproteicos/ultraestrutura , Pseudomonas aeruginosa/metabolismo , Piocinas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Colicinas/metabolismo , Cristalografia por Raios X , Desoxirribonucleases/metabolismo , Desoxirribonucleases/ultraestrutura , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Filogenia , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/genética , Pseudomonas aeruginosa/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...