Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Clin Oral Investig ; 27(1): 125-137, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36018448

RESUMO

OBJECTIVES: To evaluate hydrogel-based scaffolds embedded with parathyroid hormone (PTH)-loaded mesoporous bioactive glass (MBG) on the enhancement of bone tissue regeneration in vitro. MATERIALS AND METHODS: MBG was produced via sol-gel technique followed by PTH solution imbibition. PTH-loaded MBG was blended into the hydrogels and submitted to a lyophilisation process associated with a chemical crosslinking reaction to the production of the scaffolds. Characterisation of the MBG and PTH-loaded MBG scaffolds, including the scanning electron microscope (SEM) connected with an X-ray detector (EDX), Fourier transform infrared (FTIR), compression strength, rheological measurements, swelling and degradation rates, and PTH release analysis, were performed. Also, bioactivity using simulated-body fluid (SBF), biocompatibility (MTT), and osteogenic differentiation analyses (von Kossa and Alizarin Red stainings, and µ-computed tomography, µCT) of the scaffolds were carried out. RESULTS: SEM images demonstrated MBG particles dispersed into the hydrogel-based scaffold structure, which was homogeneously porous and well interconnected. EDX and FTIR revealed large amounts of carbon, oxygen, sodium, and silica in the scaffold composition. Bioactivity experiments revealed changes on sample surfaces over the analysed period, indicating the formation of carbonated hydroxyapatite; however, the chemical composition remained stable. PTH-loaded hydrogel-based scaffolds were biocompatible for stem cells from human-exfoliated deciduous teeth (SHED). A high quantity of calcium deposits on the extracellular matrix of SHED was found for PTH-loaded hydrogel-based scaffolds. µCT images showed MBG particles dispersed into the scaffolds' structure, and a porous, lamellar, and interconnected hydrogel architecture. CONCLUSIONS: PTH-loaded hydrogel-based scaffolds demonstrated consistent morphology and physicochemical properties for bone tissue regeneration, as well as bioactivity, biocompatibility, and osteoinductivity in vitro. Thus, the scaffolds presented here are recommended for future studies on 3D printing. CLINICAL RELEVANCE: Bone tissue regeneration is still a challenge for several approaches to oral and maxillofacial surgeries, though tissue engineering applying SHED, scaffolds, and osteoinductive mediators might help to overcome this clinical issue.


Assuntos
Osteogênese , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Hormônio Paratireóideo/farmacologia , Hidrogéis/farmacologia , Regeneração Óssea , Vidro/química , Porosidade , Materiais Biocompatíveis/química
2.
Braz Oral Res ; 34: e033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32267290

RESUMO

The aim of our study was to isolate populations of keratinocyte stem cells based on the expression of cell surface markers and to investigate whether the culture could affect their phenotype. keratinocytes from human oral mucosa were sorted based on the expression of the epithelial stem cell markers p75NTR and CD71. We also examined the co-expression of other epithelial stem markers such as integrins ß1 and α6 and their stem cell-like proprieties in in vitro assays. Three passages after being sorted by MACS, more than 93% of the p75NTR+ve cells lost the expression of p75NTR, while 5.46% of the p75NTR-ve gained it. Within the small population of the p75NTR+ve cells, 88% co-expressed other epithelial stem cell markers such as integrins ß1 and α6, while only 28% of p75NTR-ve cells co-expressed these markers. These results were confirmed by sorting cells by FACS. Additionally, when double staining was used for sorting cells, 99% of the p75NTR+veCD71-ve and 33% of the p75NTR-veCD71+ve cells expressed both integrins, but just one week after culture, only 1.74% of the p75NTR+veCD71-ve cells still expressed p75NTR and only 0.32% still expressed CD71. Similar results were obtained when co-culturing p75NTR+ve and p75NTR-ve populations before analysis. Our results suggest that phenotype changes may be part of an intrinsic cellular mechanism to conserve levels of protein expression as they may found in the human body. In addition, in vitro culture may not offer ideal conditions for epithelial stem cell maintenance due to phenotype changes under standard culture conditions.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Queratinócitos/citologia , Mucosa Bucal/citologia , Fenótipo , Células-Tronco/citologia , Antígenos CD/análise , Biomarcadores/análise , Separação Celular/métodos , Citometria de Fluxo/métodos , Humanos , Proteínas do Tecido Nervoso/análise , Receptores de Fator de Crescimento Neural/análise , Receptores da Transferrina/análise , Reprodutibilidade dos Testes
3.
Braz. oral res. (Online) ; 34: e033, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1089391

RESUMO

Abstract The aim of our study was to isolate populations of keratinocyte stem cells based on the expression of cell surface markers and to investigate whether the culture could affect their phenotype. keratinocytes from human oral mucosa were sorted based on the expression of the epithelial stem cell markers p75NTR and CD71. We also examined the co-expression of other epithelial stem markers such as integrins β1 and α6 and their stem cell-like proprieties in in vitro assays. Three passages after being sorted by MACS, more than 93% of the p75NTR+ve cells lost the expression of p75NTR, while 5.46% of the p75NTR-ve gained it. Within the small population of the p75NTR+ve cells, 88% co-expressed other epithelial stem cell markers such as integrins β1 and α6, while only 28% of p75NTR-ve cells co-expressed these markers. These results were confirmed by sorting cells by FACS. Additionally, when double staining was used for sorting cells, 99% of the p75NTR+veCD71-ve and 33% of the p75NTR-veCD71+ve cells expressed both integrins, but just one week after culture, only 1.74% of the p75NTR+veCD71-ve cells still expressed p75NTR and only 0.32% still expressed CD71. Similar results were obtained when co-culturing p75NTR+ve and p75NTR-ve populations before analysis. Our results suggest that phenotype changes may be part of an intrinsic cellular mechanism to conserve levels of protein expression as they may found in the human body. In addition, in vitro culture may not offer ideal conditions for epithelial stem cell maintenance due to phenotype changes under standard culture conditions.


Assuntos
Humanos , Fenótipo , Células-Tronco/citologia , Queratinócitos/citologia , Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Mucosa Bucal/citologia , Receptores da Transferrina/análise , Biomarcadores/análise , Antígenos CD/análise , Separação Celular/métodos , Reprodutibilidade dos Testes , Receptores de Fator de Crescimento Neural/análise , Citometria de Fluxo/métodos , Proteínas do Tecido Nervoso/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA