Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38258135

RESUMO

In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.

2.
Membranes (Basel) ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233539

RESUMO

This work addresses the challenges concerning the development of "all-green" high-performance biodegradable membrane materials based on poly-3-hydroxybutyrate (PHB) and a natural biocompatible functional additive, iron-containing porphyrin, Hemin (Hmi) via modification and surface functionalization. A new facile and versatile approach based on electrospinning (ES) is advanced when modification of the PHB membranes is performed by the addition of low concentrations of Hmi (from 1 to 5 wt.%). Structure and performance of the resultant {HB/Hmi membranes were studied by diverse physicochemical methods, including differential scanning calorimetry, X-ray analysis, scanning electron microscopy, etc. Modification of the PHB fibrous membranes with Hmi allows control over their quality, supramolecular structure, morphology, and surface wettability. As a result of this modification, air and liquid permeability of the modified electrospun materials markedly increases. The proposed approach provides preparation of high-performance all-green membranes with tailored structure and performance for diverse practical applications, including wound healing, comfort textiles, facial protective masks, tissue engineering, water and air purification, etc.

3.
Polymers (Basel) ; 13(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805853

RESUMO

In this work, we studied the photocatalytic activity of photosensitizers (PSs) of various natures solubilized with polyvinylpyrrolidone (PVP) and ternary block copolymer ethylene and propylene oxide Pluronic F127 (F127) in a model reaction of tryptophan photo-oxidation in water in the presence of chitosan (CT). Water-soluble compounds (dimegin and trisodium salt of chlorin e6 (Ce6)) and hydrophobic porphyrins (tetraphenylporphyrin (TPP) and its fluorine derivative (TPPF20)) were used as PSs. It was shown that the use of chitosan (Mw ~100 kDa) makes it possible to obtain a system whose activity is comparable to that of the photosensitizer-amphiphilic polymer systems. Thus, the previously observed drop in the photosensitizing activity of PS in the presence of a polysaccharide and amphiphilic polymers (AP) was absent in this case. At the same time, chitosan had practically no inhibitory effect on hydrophobic porphyrins solubilized by Pluronic F127.

4.
J Phys Chem A ; 122(17): 4298-4305, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29644856

RESUMO

The photoinduced reactions of benzophenone (B) in biaxially oriented polypropylene (BOPP) were studied with nanosecond laser photolysis (N2 laser, λ337.1 nm). The first observed transient was a triplet state 3B*. Decay of 3B* led to formation of a radical pair (RP) of BH• and R•, where R• is a radical formed by hydrogen abstraction from BOPP (RH) by 3B*. We studied BOPP after the preheating for a short time in a temperature range 298-423 K, which is essentially lower than its melting point of 453 K. All measurements with not-heated and with preheated (annealed) BOPP were made at 298 K. A radical pair (RP) apparently decays as a contact pair 3[BH•, R•] in nonheated BOPP. A critical phenomenon takes place: dissociation of RP with a formation of free radicals in the polymer bulk is observed at preheating temperature Tcrit ≈ 403 K and at a higher T. The physical process of heating and cooling of BOPP apparently resulted in the restructuring of crystallites, their agglomeration, shrinking of the distribution of crystallites according to their sizes in BOPP. Overall BOPP becomes softer which manifests itself in the radical kinetics. The decay kinetics of 3B* and RP in the cage fits well the first-order law. Rate constants were obtained. Radicals BH•, which exit into the polymer bulk at temperatures of preheating T ≥ 403 K, decay by cross-termination according to the second-order law. A relatively high rate constant ∼108 M-1·s-1 for this reaction was obtained due to diffusion of BH• enclosed in the soft amorphous phase of BOPP. Properties of BOPP containing B were studied with ESR, DSC, IR, and WAXD.

5.
Int J Biol Macromol ; 41(5): 534-47, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17719628

RESUMO

High-sensitivity differential scanning microcalorimetry (HSDSC), small-angle X-ray scattering (SAXS), light (LM) and scanning electronic (SEM) microscopy techniques were used to study the defectiveness of different supramolecular structures in starches extracted from 11 Thai cultivars of rice differing in level of amylose and amylopectin defects in starch crystalline lamellae. Despite differences in chain-length distribution of amylopectin macromolecules and amylose level in starches, the invariance in the sizes of crystalline lamellae, amylopectin clusters and granules was established. The combined analysis of DSC, SAXS, LM and SEM data for native starches, as well as the comparison of the thermodynamic data for native and annealed starches, allowed to determine the structure of defects and the localization of amylose chains in crystalline and amorphous lamellae, defectiveness of lamellae, clusters and granules. It was shown that amylose "tie chains", amylose-lipid complexes located in crystalline lamellae, defective ends of double helical chains dangling from crystallites inside amorphous lamellae ("dangling" chains), as well as amylopectin chains with DP 6-12 and 25-36 could be considered as defects. Their accumulation can lead to a formation of remnant granules. The changes observed in the structure of amylopectin chains and amylose content in starches are reflected in the interconnected alterations of structural organization on the lamellar, cluster and granule levels.


Assuntos
Oryza/química , Oryza/genética , Amido/química , Amido/genética , Varredura Diferencial de Calorimetria/métodos , China , Geografia , Microscopia Eletrônica de Varredura/métodos , Oryza/ultraestrutura , Amido/ultraestrutura , Termodinâmica , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...