Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 114(5): 971-981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376984

RESUMO

Nodule-specific cysteine-rich (NCR) peptides, encoded in the genome of the Mediterranean legume Medicago truncatula (barrelclover), are known to regulate plant-microbe interactions. A subset of computationally derived 20-mer peptide fragments from 182 NCR peptides was synthesized to identify those with activity against the unculturable vascular pathogen associated with citrus greening disease, 'Candidatus Liberibacter asiaticus' (CLas). Grounded in a design of experiments framework, we evaluated the peptides in a screening pipeline involving three distinct assays: a bacterial culture assay with Liberibacter crescens, a CLas-infected excised citrus leaf assay, and an assay to evaluate effects on bacterial acquisition by the nymphal stage of hemipteran vector Diaphorina citri. A subset of the 20-mer NCR peptide fragments inhibits both CLas growth in citrus leaves and CLas acquisition by D. citri. Two peptides induced higher levels of D. citri mortality. These findings reveal 20-mer NCR peptides as a new class of plant-derived biopesticide molecules to control citrus greening disease.


Assuntos
Citrus , Medicago truncatula , Peptídeos , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Citrus/microbiologia , Peptídeos/química , Peptídeos/metabolismo , Medicago truncatula/microbiologia , Cisteína , Hemípteros/microbiologia , Agentes de Controle Biológico , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Liberibacter/genética , Animais , Rhizobiaceae/genética
2.
Microorganisms ; 11(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38004775

RESUMO

Rhizosphere interactions are an understudied component of citrus production. This is even more important in Florida flatwood soils, which pose significant challenges in achieving sustainable and effective fruit production due to low natural fertility and organic matter. Citrus growers apply soil amendments, including oak mulch, to ameliorate their soil conditions. Thus, the aim of this research was to evaluate the effects of oak mulch on citrus nutrient uptake, soil characteristics, and rhizosphere composition. The plant material consisted of 'Valencia' sweet orange (Citrus × sinensis) trees grafted on 'US-812' (C. reticulata × C. trifoliata) rootstock. The experiment consisted of two treatments, which included trees treated with oak mulch (300 kg of mulch per plot) and a control. The soil and leaf nutrient contents, soil pH, cation exchange capacity, moisture, temperature, and rhizosphere bacterial compositions were examined over the course of one year (spring and fall 2021). During the spring samplings, the citrus trees treated with oak mulch resulted in significantly greater soil Zn and Mn contents, greater soil moisture, and greater rhizosphere bacterial diversity compared to the control, while during the fall samplings, only a greater soil moisture content was observed in the treated trees. The soil Zn and Mn content detected during the spring samplings correlated with the significant increases in the diversity of the rhizosphere bacterial community composition. Similarly, the reduced rates of leaching and evaporation (at the soil surface) of oak mulch applied to Florida sandy soils likely played a large role in the significant increase in moisture and nutrient retention.

3.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335099

RESUMO

Testing the function of therapeutic compounds in plants is an important component of agricultural research. Foliar and soil-drench methods are routine but have drawbacks, including variable uptake and the environmental breakdown of tested molecules. Trunk injection of trees is well-established, but most methods for this require expensive, proprietary equipment. To screen various treatments for Huanglongbing, a simple, low-cost method to deliver these compounds to the vascular tissue of small greenhouse-grown citrus trees infected with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) or infested with the phloem-feeding CLas insect vector Diaphorina citri Kuwayama (D. citri) is needed. To meet these screening requirements, a direct plant infusion (DPI) device was designed that connects to the plant's trunk. The device is made using a nylon-based 3D-printing system and easily obtainable auxiliary components. The compound uptake efficacy of this device was tested in citrus plants using the fluorescent marker 5,6-carboxyfluorescein-diacetate. Uniform compound distribution of the marker throughout the plants was routinely observed. Furthermore, this device was used to deliver antimicrobial and insecticidal molecules to determine their effects on CLas and D. citri respectively. The aminoglycoside antibiotic streptomycin was delivered into CLas-infected citrus plants using the device, which resulted in a reduction in the CLas titer from 2 weeks to 4 weeks post treatment. Delivering the neonicotinoid insecticide imidacloprid into D. citri-infested citrus plants resulted in a significant increase in psyllid mortality after 7 days. These results suggest that this DPI device represents a useful system for delivering molecules into plants for testing and facilitate research and screening purposes.


Assuntos
Citrus , Hemípteros , Inseticidas , Rhizobiaceae , Animais , Hemípteros/microbiologia , Doenças das Plantas/microbiologia
4.
Phytopathology ; 113(7): 1171-1179, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36750555

RESUMO

Huanglongbing (HLB), referred to as citrus greening disease, is a bacterial disease impacting citrus production worldwide and is fatal to young trees and mature trees of certain varieties. In some areas, the disease is devastating the citrus industry. A successful solution to HLB will be measured in economics: citrus growers need treatments that improve tree health, fruit production, and most importantly, economic yield. The profitability of citrus groves is the ultimate metric that truly matters when searching for solutions to HLB. Scientific approaches used in the laboratory, greenhouse, or field trials are critical to the discovery of those solutions and to estimate the likelihood of success of a treatment aimed at commercialization. Researchers and the citrus industry use a number of proxy evaluations of potential HLB solutions; understanding the strengths and limitations of each assay, as well as how best to compare different assays, is critical for decision-making to advance therapies into field trials and commercialization. This perspective aims to help the reader compare and understand the limitations of different proxy evaluation systems based on the treatment and evaluation under consideration. The researcher must determine the suitability of one or more of these metrics to identify treatments and predict the usefulness of these treatments in having an eventual impact on citrus production and HLB mitigation. As therapies advance to field trials in the next few years, a reevaluation of these metrics will be useful to guide future research efforts on strategies to mitigate HLB and vascular bacterial pathogens in other perennial crops.


Assuntos
Citrus , Rhizobiaceae , Citrus/microbiologia , Liberibacter , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Árvores
5.
Biomolecules ; 12(4)2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454167

RESUMO

Aedes aegypti Trypsin Modulating Oostatic Factor (AeaTMOF). a mosquito decapeptide that controls trypsin biosynthesis in female and larval mosquitoes. enters the gut epithelial cells of female mosquitoes using ABC-tmfA receptor/importer. To study the ultimate targeted receptor after AeaTMOF enters the cell, AeaTMOF was incubated in vitro with either Escherichia coli or Spodoptera frugiperda protein-expressing extracts containing 70S and 80S ribosomes, respectively. The effect of AeaTMOF on luciferase biosynthesis in vitro using 70S ribosomes was compared with that of oncocin112 (1-13), a ribosome-binding antibacterial peptide. The IC50 of 1 µM and 2 µM, respectively, for both peptides was determined. Incubation with a protein-expressing system and S. frugiperda 80S ribosomes determined an IC50 of 1.8 µM for Aedes aegypti larval late trypsin biosynthesis. Incubation of purified E. coli ribosome with increasing concentration of AeaTMOF shows that the binding of AeaTMOF to the bacterial ribosome exhibits a high affinity (KD = 23 ± 3.4 nM, Bmax = 0.553 ± 0.023 pmol/µg ribosome and Kassoc = 4.3 × 107 M-1). Molecular modeling and docking experiments show that AeaTMOF binds bacterial and Drosophila ribosome (50S and 60S, respectively) at the entrance of the ribosome exit tunnel, blocking the tRNA entrance and preventing protein biosynthesis. Recombinant E. coli cells that express only ABC-tmfA importer are inhibited by AeaTMOF but not by oncocin112 (1-13). These results suggest that the ribosome is the ultimate targeted receptor of AeaTMOF.


Assuntos
Aedes , Escherichia coli , Sequência de Aminoácidos , Animais , Escherichia coli/metabolismo , Feminino , Larva , Oligopeptídeos , Ribossomos/metabolismo , Tripsina/metabolismo
6.
Life (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36675967

RESUMO

The antimicrobial properties of proline-rich Aedes aegypti decapeptide TMOF (AeaTMOF) and oncocin112 (1-13) were compared. Incubations with multidrug-resistant Escherichia coli cells showed that AeaTMOF (5 mM) was able to completely inhibit bacterial cell growth, whereas oncocin112 (1-13) (20 mM) partially inhibited bacterial growth as compared with bacterial cells that were not multidrug-resistant cells. AeaTMOF (5 mM) was very effective against Acinetobacter baumannii and Pseudomonas aeruginosa, completely inhibiting cell growth during 15 h incubations. AeaTMOF (5 mM) completely inhibited the Gram-positive bacteria Staphylococcus aureus and Bacillus thurengiensis sups. Israelensis cell growth, whereas oncocin112 (1-13) (10 and 20 mM) failed to affect bacterial cell growth. E. coli cells that lack the SbmA transporter were inhibited by AeaTMOF (5 mM) and not by oncocin112 (1-13) (10 to 20 mM), indicating that AeaTMOF can use other bacterial transporters than SbmA that is mainly used by proline-rich antimicrobial peptides. Incubation of E. coli cells with NaAzide showed that AeaTMOF does not use ABC-like transporters that use ATP hydrolysis to import molecules into bacterial cells. Three-dimensional modeling and docking of AeaTMOF to SbmA and MdtM transporters showed that AeaTMOF can bind these proteins, and the binding location of AeaTMOF inside these protein transporters allows AeaTMOF to be transported into the bacterial cytosol. These results show that AeaTMOF can be used as a future antibacterial agent against both multidrug-resistant Gram-positive and -negative bacteria.

7.
Front Bioeng Biotechnol ; 10: 1045337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619377

RESUMO

Nanobodies® (VHH antibodies), are small peptides that represent the antigen binding domain, VHH of unique single domain antibodies (heavy chain only antibodies, HcAb) derived from camelids. Here, we demonstrate production of VHH nanobodies against the SARS-CoV-2 spike proteins in the solanaceous plant Nicotiana benthamiana through transient expression and their subsequent detection verified through western blot. We demonstrate that these nanobodies competitively inhibit binding between the SARS-CoV-2 spike protein receptor binding domain and its human receptor protein, angiotensin converting enzyme 2. There has been significant interest and a number of publications on the use of plants as biofactories and even some reports of producing nanobodies in plants. Our data demonstrate that functional nanobodies blocking a process necessary to initiate SARS-CoV-2 infection into mammalian cells can be produced in plants. This opens the alternative of using plants in a scheme to rapidly respond to therapeutic needs for emerging pathogens in human medicine and agriculture.

8.
Commun Biol ; 4(1): 1331, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824370

RESUMO

Huanglongbing (HLB) is a destructive disease of citrus primarily transmitted by the Asian citrus psyllid (ACP). Biocontrol of ACP is an environmentally sustainable alternative to chemicals. However, the risk of parasitoid rational application in ACP biocontrol has never been evaluated. Here we show, the dominant parasitoid of ACP, Tamarixia radiata, can acquire the HLB pathogen Candidatus Liberibacter asiaticus (CLas) and transmit it horizontally when probing ACP nymphs. If these ACP nymphs survive the probing, develop to adults and move to healthy plants, CLas can be transmitted to citrus leaves during feeding. We illustrate the formerly unrecognized risk that a parasitoid can potentially serve as a phoretic vector of the pathogen transmitted by its host, thus potentially diminishing some of the benefits it confers via biocontrol. Our findings present a significant caution to the strategy of using parasitoids in orchards with different infection status of insect-vectored pathogens.


Assuntos
Agentes de Controle Biológico , Citrus/microbiologia , Insetos Vetores/fisiologia , Liberibacter/fisiologia , Doenças das Plantas/microbiologia , Vespas/fisiologia , Animais , Feminino , Hemípteros/crescimento & desenvolvimento , Hemípteros/parasitologia , Ninfa/crescimento & desenvolvimento , Ninfa/parasitologia
9.
Biomolecules ; 11(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201823

RESUMO

Trypsin Modulating Oostatic Factor (TMOF) receptor was solubilized from the guts of female Ae. Aegypti and cross linked to His6-TMOF and purified by Ni affinity chromatography. SDS PAGE identified two protein bands (45 and 61 kDa). The bands were cut digested and analyzed using MS/MS identifying a protein sequence (1306 amino acids) in the genome of Ae. aegypti. The mRNA of the receptor was extracted, the cDNA sequenced and cloned into pTAC-MAT-2. E. coli SbmA- was transformed with the recombinant plasmid and the receptor was expressed in the inner membrane of the bacterial cell. The binding kinetics of TMOF-FITC was then followed showing that the cloned receptor exhibits high affinity to TMOF (KD = 113.7 ± 18 nM ± SEM and Bmax = 28.7 ± 1.8 pmol ± SEM). Incubation of TMOF-FITC with E. coli cells that express the receptor show that the receptor binds TMOF and imports it into the bacterial cells, indicating that in mosquitoes the receptor imports TMOF into the gut epithelial cells. A 3D modeling of the receptor indicates that the receptor has ATP binding sites and TMOF transport into recombinant E. coli cells is inhibited with ATPase inhibitors Na Arsenate and Na Azide.


Assuntos
Aedes/genética , Clonagem Molecular/métodos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Sequência de Aminoácidos , Animais , Feminino , Trato Gastrointestinal/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
Front Physiol ; 12: 571826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897443

RESUMO

Citrus Greening or Huanglongbing (HLB) is a disease of citrus, causing high reduction in citrus production and is transmitted by the Asian citrus psyllid Diaphorina citri Kuwayama vectoring a phloem-limited bacterium Candidatus Liberibacter sp. We report research results using crowdsourcing challenge strategy identifying potential gene targets in D. citri to control the insect using RNA interference (RNAi). From 63 submitted sequences, 43 were selected and tested by feeding them to D. citri using artificial diet assays. After feeding on artificial diet, the three most effective dsRNAs causing 30% mortality above control silenced genes expressing iron-sulfur cluster subunit of the mitochondrial electron transport chain complex (Rieske), heme iron-binding terminal oxidase enzyme (Cytochrome P450) and tetrahydrobiopterin (BH4) pathway enzyme (Pterin 4α-Carbinolamine Dehydratase). These sequences were cloned into a citrus phloem-limited virus (Citrus tristeza virus, CTV T36) expressing dsRNA against these target genes in citrus. The use of a viral mediated "para-transgenic" citrus plant system caused higher mortality to adult D. citri than what was observed using artificial diet, reaching 100% when detached citrus leaves with the engineered CTV expressing dsRNA were fed to adult D. citri. Using this approach, a virus-induced gene silencing (VIGS) can be used to test future transgenic cultivars before genetically engineering citrus. RNA Seq analysis after feeding D. citri CTV-RIE on infected leaves identified transcriptionally modified genes located upstream and downstream of the targeted RIE gene. These genes were annotated showing that many are associated with the primary function of the Rieske gene that was targeted by VIGS.

11.
PLoS One ; 15(10): e0239771, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33022020

RESUMO

Huanglongbing (HLB) is a deadly, incurable citrus disease putatively caused by the unculturable bacterium, 'Candidatus Liberibacter asiaticus' (CLas), and transmitted by Diaphorina citri. Prior studies suggest D. citri transmits CLas in a circulative and propagative manner; however, the precise interactions necessary for CLas transmission remain unknown, and the impact of insect sex on D. citri-CLas interactions is poorly understood despite reports of sex-dependent susceptibilities to CLas. We analyzed the transcriptome, proteome, metabolome, and microbiome of male and female adult D. citri reared on healthy or CLas-infected Citrus medica to determine shared and sex-specific responses of D. citri and its endosymbionts to CLas exposure. More sex-specific than shared D. citri responses to CLas were observed, despite there being no difference between males and females in CLas density or relative abundance. CLas exposure altered the abundance of proteins involved in immunity and cellular and oxidative stress in a sex-dependent manner. CLas exposure impacted cuticular proteins and enzymes involved in chitin degradation, as well as energy metabolism and abundance of the endosymbiont 'Candidatus Profftella armatura' in both sexes similarly. Notably, diaphorin, a toxic Profftella-derived metabolite, was more abundant in both sexes with CLas exposure. The responses reported here resulted from a combination of CLas colonization of D. citri as well as the effect of CLas infection on C. medica. Elucidating these impacts on D. citri and their endosymbionts contributes to our understanding of the HLB pathosystem and identifies the responses potentially critical to limiting or promoting CLas acquisition and propagation in both sexes.


Assuntos
Citrus/microbiologia , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Rhizobiaceae/patogenicidade , Simbiose/fisiologia , Animais , Citrus/metabolismo , Citrus/fisiologia , Feminino , Hemípteros/metabolismo , Hemípteros/fisiologia , Insetos Vetores/metabolismo , Insetos Vetores/fisiologia , Masculino , Metaboloma/fisiologia , Microbiota/fisiologia , Estresse Oxidativo/fisiologia , Proteoma/metabolismo , Transcriptoma/fisiologia
12.
Sci Rep ; 10(1): 18244, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106553

RESUMO

The Asian citrus psyllid (Diaphorina citri) transmits the bacterium 'Candidatus Liberibacter asiaticus' (CLas), which causes huanglongbing (citrus greening) disease, in a circulative-propagative manner. We compared CLas inoculation efficiency of D. citri nymphs and adults into healthy (uninfected) citron leaves when both vector stages were reared from eggs on infected plants. The proportion of CLas-positive leaves was 2.5% for nymphs and 36.3% for adults. CLas acquisition by early instar nymphs followed by dissections of adults and 4th instar nymphs revealed that CLas bacterium had moved into the head-thorax section (containing the salivary glands) in 26.7-30.0% of nymphs and 37-45% of adults. Mean Ct values in these sections were 31.6-32.9 and 26.8-27.0 for nymphs and adults, respectively. Therefore, CLas incidence and titer were higher in the head-thorax of adults than in nymphs. Our results suggest that following acquisition of CLas by early instar D. citri nymphs, emerging adults inoculate the bacteria into citrus more efficiently than nymphs because adults are afforded a longer latent period necessary for multiplication and/or translocation of CLas into the salivary glands of the vector. We propose that CLas uses D. citri nymphs mainly for pathogen acquisition and multiplication, and their adults mainly for pathogen inoculation and spread.


Assuntos
Citrus/microbiologia , Hemípteros/fisiologia , Interações Hospedeiro-Patógeno , Ninfa/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Rhizobiaceae/patogenicidade , Animais , Citrus/parasitologia , Doenças das Plantas/parasitologia , Folhas de Planta/parasitologia
13.
Plant Physiol Biochem ; 148: 70-79, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31945669

RESUMO

Citrus greening, also called Huanglongbing (HLB), is one of the most destructive citrus diseases worldwide. It is caused by the fastidious gram-negative α-proteobacteria bacterium Candidatus Liberibacter asiaticus (CLas) and vectored by the Asian citrus psyllid (ACP), Diaphorina citri. Currently, there is no cure for HLB, no compounds have been successful in controlling HLB, and no sustainable management practices have been established for the disease. Thus, searching for alternative citrus greening disease mitigation strategies is considered an urgent priority for a sustainable citrus industry. The aim of this study was to use compounds extracted from oak, Quercus hemisphaerica, and to assess the antibacterial effects of these against CLas-infected citrus plants. The application of aqueous oak leaf extracts showed substantial inhibitory effects against CLas in citrus plants and the activity of genes related to starch. Significant differences were also observed in plant phenotypic and physiological traits after treatments. Citrus plants treated with oak extracts displayed an increase in stomatal conductance, chlorophyll content and nutrient uptake concurrently with a reduction of CLas titer, when compared to citrus plants treated with just water. The information provided from this study suggests a new management treatment program to effectively deal with the HLB disease.


Assuntos
Citrus , Extratos Vegetais , Folhas de Planta , Quercus , Rhizobiaceae , Animais , Antibacterianos/farmacologia , Citrus/efeitos dos fármacos , Citrus/microbiologia , Hemípteros/microbiologia , Extratos Vegetais/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Quercus/química , Rhizobiaceae/efeitos dos fármacos , Rhizobiaceae/fisiologia
14.
BMC Plant Biol ; 19(1): 122, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940073

RESUMO

BACKGROUND: Citrus Huanglongbing (HLB) is a bacterial disease with high economic significance. The associated agent Candidatus Liberibacter asiaticus is a fastidious, phloem-limited, intracellular bacterium that is transmitted by an insect vector the Asian citrus psyllid (ACP). The genome of Ca. L. asiaticus contains protein secretion machinery that suggests host cell modulation capacity of this bacterium. RESULTS: A total of 28 candidate effectors, an important class of secreted proteins, were predicted from the Ca. L. asiaticus genome. Sequence specific primers were designed for reverse transcription (RT) and quantitative PCR (qPCR), and expression was validated for 20 of the effector candidates in infected citrus with multiple genetic background. Using detached leaf inoculation, the mRNA of effectors was detected from 6 h to 7 days post ACP exposure. It was observed that higher bacterial titers were associated with a larger number of effectors showing amplification across all samples. The effectors' expression were compared in citrus hosts with various levels of HLB tolerance, including susceptible Duncan grapefruit and Washington navel orange, tolerant citron and Cleopatra mandarin, and resistant Pomeroy trifoliate and Carrizo citrange. Across all genotypes relatively high expression was observed for CLIBASIA_03695, CLIBASIA_00460, CLIBASIA_00420, CLIBASIA_04580, CLIBASIA_05320, CLIBASIA_04425, CLIBASIA_00525 and CLIBASIA_05315 in either a host-specific or -nonspecific manners. The two genotypes in each HLB-response group also show effector-expression profiles that seem to be different. In a companion study, the expression of effectors was compared between leaves and roots of own-rooted citrus that had been Ca. L. asiaticus-infected for more than a year. Results indicated relatively high expression of CLIBASIA_03875, CLIBASIA_04800 and CLIBASIA_05640 in all leaf and some root tissues of citron, Duncan and Cleopatra. CONCLUSION: This temporal and spatial expression analysis of Ca. L. asiaticus effectors identified candidates possibly critical for early bacterial colonization, host tolerance suppression and long-term survival which are all worthy of further investigation.


Assuntos
Proteínas de Bactérias/genética , Citrus/microbiologia , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Animais , Citrus/imunologia , Resistência à Doença , Genótipo , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Floema/imunologia , Floema/microbiologia , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , RNA Bacteriano/genética , RNA Mensageiro/genética , Rhizobiaceae/fisiologia
16.
Arch Insect Biochem Physiol ; 99(3): e21506, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30176073

RESUMO

The full length of Culex quiquefasciatus early trypsin has been cloned and sequenced and a three-dimensional (3D) model of the enzyme was built showing that the enzyme has the canonical trypsin's active pocket containing H78, D123, S129, and D128. The biosynthesis of juvenile hormone (JH) III by the corpora allata (CA) in female Cx. quiquefasciatus is sugar-dependent. Females that were maintained on water after emergence synthesize very little JH III, JH III bisepoxide, and methyl farnesoate (MF) (3.8, 1.1, and 0.8 fmol/4 hr/CA, respectively). One hour after sugar feeding, the synthesis of JH III and JH III bisepoxide reached a maximum (11.3 and 5.9 fmol/4 hr/CA, respectively) whereas MF biosynthesis reached a maximum at 24 hr (5.2 fmol/4 hr/CA). The early trypsin is transcribed with a short intron (51 nt) is spliced when JH III biosynthesis is high in sugar fed and at 1 hr after the blood meal (22 and 15 fmol/4 hr/CA, respectively). We investigated the transcriptional and posttranscriptional regulation of the early trypsin gene showing that JH III concentrations influence splicing. In the absence JH III the unspliced transcript is linked by a phosphoamide bond at the 5'-end to RNA ribonuleoprotein (RNP). The biosynthesis of the early trypsin was followed in ligated abdomens (without CA) of newly emerged females that fed blood by enema. Our results show that the early trypsin biosynthesis depends on sugar and blood feeding, whereas the late trypsin biosynthesis does not depend on sugar feeding, or JH III biosynthesis. Downregulating the early trypsin transcript does not affect the late trypsin.


Assuntos
Culex/enzimologia , Splicing de RNA , Sesquiterpenos/metabolismo , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Metabolismo dos Carboidratos , Culex/genética , Ácidos Graxos Insaturados/biossíntese , Feminino , Proteínas de Insetos/metabolismo , Íntrons , Conformação Proteica , RNA Mensageiro/metabolismo , Tripsina/química
17.
J Microsc Ultrastruct ; 6(3): 129-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30221138

RESUMO

BACKGROUND: Salivary sheaths, also known as stylet sheaths or stylet tracks, are essential features of the piercing-sucking feeding mechanism of plant-feeding hemipteran insects, many of which are vectors of economically important plant viral and bacterial pathogens. Although knowledge of their structure and function is incomplete, these salivary sheaths are frequently used by researchers to study hemipteran's feeding behavior, host preference, or host resistance, because these sheaths remain in the plant tissues after the insect withdraws its stylets following its feeding or probing on these tissues. However, in most cases, it is not known how long these salivary sheaths may last in plant tissues after their deposition by the feeding insects. An earlier report suggested that the salivary sheaths of the Asian citrus psyllid, Diaphorina citri (Hemiptera, Liviidae), vector of the devastating huanglongbing (citrus greening) disease bacterium, start to dissipate 1 week after their deposition in citrus leaves. METHODS AND RESULTS: Here, using epifluorescence microscopy of cross sections in citron leaves, we found that D. citri salivary sheaths show signs of degradation in 3-4 weeks and become mostly degraded by 5-6 weeks, following their deposition by the psyllids into citrus tissues. Degradation of the salivary sheath starts at or near the "flange" area close to the leaf surface and continues gradually inward through the intercellular part of the sheath, within the mesophyll tissue, but apparently does not extend to the deeper or intracellular parts of the sheath in or near the phloem. Staining citron leaf sections with the fluorescent stain calcofluor white, which stains fungi, or propidium iodide (DNA/RNA stain) suggested that the degraded parts of the older salivary sheaths are not associated with fungi or bacterial accumulations. CONCLUSION: We speculate that degradation of the salivary sheaths may be due to enzymatic activities in the host plant, especially in the extracellular matrix of the mesophyll tissue.

18.
Sci Rep ; 8(1): 10352, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985396

RESUMO

Citrus greening disease (huanglongbing), currently the most destructive citrus disease worldwide, is putatively caused by Candidatus Liberibacter asiaticus (CLas), a phloem-limited bacterium transmitted by the Asian citrus psyllid Diaphorina citri. Electrical penetration graph (EPG) recordings over 42 h were performed to compare the feeding behavior of D. citri adults and 4th or 5th instar nymphs feeding on CLas-infected or healthy citron plants. Nymphs performed more individual bouts of phloem ingestion (E2) and recorded longer phloem ingestion total time compared with adults, whereas adults performed more bouts of xylem ingestion (G) and recorded greater total time of xylem ingestion compared with nymphs. Quantitative polymerase chain reaction tests indicated that 58% of nymphs and 6% of adults acquired CLas during the 42 h EPG-recorded feeding on infected plants. In a histological study, a greater proportion of salivary sheaths produced by nymphs were branched compared to those of the adults. Our results strongly suggest that more bouts and longer feeding time in the phloem by nymphs may explain their more efficient CLas acquisition from infected plants compared to adults. This is the first EPG study comparing nymphs and adults of D. citri on healthy and infected citrus plants in relation to CLas acquisition.


Assuntos
Citrus/microbiologia , Hemípteros/fisiologia , Floema/metabolismo , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Animais , Citrus/crescimento & desenvolvimento , Eletricidade , Comportamento Alimentar , Hemípteros/crescimento & desenvolvimento , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Microscopia de Fluorescência , Ninfa/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Rhizobiaceae/isolamento & purificação
19.
J Insect Physiol ; 106(Pt 2): 134-146, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28109905

RESUMO

Trypsin modulating oostatic factor, a decapaptide isolated from the ovaries of A. aegypti, is the physiological factor that terminates the trypsin biosynthesis after the blood meal. Earlier results obtained from feeding mosquito larvae and injecting female mosquitoes with TMOF show that trypsin biosynthesis and egg development are inhibited, indicating that TMOF traverses the gut epithelial cells and modulates trypsin biosynthesis, making it a potential larvacidal peptide hormone. Therefore, TMOF and TMOF green fluorescent protein (GFP) fusion protein with a trypsin cleavage site, allowing TMOF release in the larval gut, were expressed in S. cerevisiae cells that were transformed using homologous recombination at ura3-52 with an engineered plasmid (pYDB2) carrying tmfA and gfp-tmfA and a strong galactose promoter (PGAL1). Southern blot analyses showed that each cell incorporated a single tmfA or gfp-tmfA. Western blot analyses of cells that were fermented up to 48h showed that the engineered S. cerevisiae cells synthesized both TMOF and GFP-TMOF and heat treatment did not affect the recombinant proteins. Engineered S. cerevisiae (3×108cells) that were fermented for 4h produced (2.1±0.2µg±S.E.M) of TMOF. Feeding the engineered cells producing TMOF and GFP-TMOF to larval mosquito caused high mortalities (66±12% and 83±8%, respectively). S. cerevisiae cells transfected with pYEX-BX carrying gfp-tmfA and (DPAR)4 or transformed by homologous recombination of pYDB2-gfp-tmfA carrying a heat shock promoter (PHP) were ineffective. Engineered heat treated yeast cells are consumed by mosquito larvae, and could be used to control mosquitoes.


Assuntos
Culicidae , Engenharia Genética/métodos , Controle de Insetos/métodos , Proteínas de Insetos/biossíntese , Oligopeptídeos/biossíntese , Animais , Proteínas de Insetos/genética , Larva , Oligopeptídeos/genética , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...