Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 976635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092655

RESUMO

Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly volatile and the least reactive member of group 14. Our experimental observations suggest that Fl exhibits lower reactivity towards Au than the volatile metal Hg, but higher reactivity than the noble gas Rn.

2.
Phys Rev Lett ; 123(16): 165001, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702328

RESUMO

Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4 keV and particle densities of n≈(12-2)×10^{24} cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data.

3.
Appl Radiat Isot ; 143: 163-175, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30447627

RESUMO

Nuclear fusion experiments performed at the National Ignition Facility produce radioactive debris, arising in reactions of fast neutrons with the target assembly. We have found that postshot debris collections are fractionated, such that isotope ratios in an individual debris sample may not be representative of the radionuclide inventory produced by the experiment. We discuss the potential sources of this fractionation and apply isotope-correlation techniques to calculate unfractionated isotope ratios that are used in measurements of nuclear reaction cross sections.

4.
Rev Sci Instrum ; 89(10): 10I133, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399665

RESUMO

A large area solid radiochemistry collector was deployed at the National Ignition Facility (NIF) with a collection efficiency for post-shot, solid target debris of approximately 1% of the total 4π solid angle. The collector consisted of a 20-cm diameter vanadium foil surrounded by an aluminum side-enclosure and was fielded 50 cm from the NIF target. The collector was used on two NIF neutron yield shots, both of which had a monolayer of 238U embedded in the capsule ablator 10 µm from the inner surface. Fission and activation products produced in the 238U were collected, and subsequent analyses via gamma spectroscopy indicated that the distribution of fission products was not uniform, with peak and valley fission products preferentially collected on the vanadium and low- and high-mass fission products primarily located on the aluminum side-enclosure. The results from these shots will be used to design future nuclear data experiments at NIF.

5.
Rev Sci Instrum ; 87(11): 11D838, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910394

RESUMO

Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85mKr/88Kr ratio, which may be the result of incorrect nuclear data.

6.
Rev Sci Instrum ; 87(11): 11D813, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910632

RESUMO

The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.

7.
Appl Radiat Isot ; 107: 199-202, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26524406

RESUMO

A high-purity carrier-free (7)Be was efficiently isolated following proton bombardment of a lithium hydroxide-aluminum target. The separation of beryllium from lithium and aluminum was achieved through a hydrochloric acid elution system utilizing cation exchange chromatography. The beryllium recovery, +99%, was assessed through gamma spectroscopy while the chemical purity was established by mass spectrometry. The decontamination factors of beryllium from lithium and aluminum were determined to be 6900 and 300, respectively.

8.
Rev Sci Instrum ; 86(7): 076105, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233419

RESUMO

A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the (198)Au/(196)Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

9.
Rev Sci Instrum ; 85(6): 063508, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985820

RESUMO

We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of (198m+g)Au and (196g)Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

10.
Phys Rev Lett ; 109(16): 162501, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215070

RESUMO

Two years after the discovery of element 117, we undertook a second campaign using the (249)Bk+(48)Ca reaction for further investigations of the production and decay properties of the isotopes of element 117 on a larger number of events. The experiments were started in the end of April 2012 and are still under way. This Letter presents the results obtained in 1200 hours of an experimental run with the beam dose of (48)Ca of about 1.5×10(19) particles. The (249)Bk target was irradiated at two energies of (48)Ca that correspond to the maximum probability of the reaction channels with evaporation of three and four neutrons from the excited (297)117. In this experiment, two decay chains of (294)117 (3n) and five decay chains of (293)117 (4n) were detected. In the course of the long-term work, (249)Cf-the product of decay of (249)Bk (330 d)-is being accumulated in the target. Consequently, in the present experiment, we also detected a single decay of the known isotope (294)118 that was produced during 2002-2005 in the reaction (249)Cf((48)Ca,3n)(294)118. The obtained results are compared with the data from previous experiments. The experiments are carried out in the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, using the heavy-ion cyclotron U400.

11.
Rev Sci Instrum ; 83(10): 10D904, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126908

RESUMO

Radiochemical analysis of post-ignition debris inside the National Ignition Facility (NIF) target chamber can help determine various diagnostic parameters associated with the implosion efficiency of the fusion capsule. This technique is limited by the ability to distinguish ablator material from other debris and by the collection efficiency of the capsule debris after implosion. Prior to designing an on-line collection system, the chemical nature and distribution of the debris inside the chamber must be determined. The focus of our current work has been on evaluating capture of activated Au hohlraum debris on passive foils (5 cm diameter, 50 cm from target center) post-shot. Preliminary data suggest that debris distribution is locally heterogeneous along the equatorial and polar line-of-sights.

12.
Rev Sci Instrum ; 83(10): 10D917, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126919

RESUMO

The Radiochemical Analysis of Gaseous Samples (RAGS) diagnostic apparatus was recently installed at the National Ignition Facility (NIF). Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of (135)Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched (124)Xe and (126)Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

13.
Phys Rev Lett ; 108(2): 022502, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22324675

RESUMO

Results of a new series of experiments on the study of production cross sections and decay properties of the isotopes of element 115 in the reaction (243)Am+(48)Ca are presented. Twenty-one new decay chains originating from (288)115 were established as the product of the 3n-evaporation channel by measuring the excitation function at three excitation energies of the compound nucleus (291)115. The decay properties of all newly observed nuclei are in full agreement with those we measured in 2003. At the lowest excitation energy E*=33 MeV, for the first time we registered the product of the 2n-evaporation channel, (289)115, which was also observed previously in the reaction (249)Bk+(48)Ca as the daughter nucleus of the decay of (293)117. The maximum cross section for the production of (288)115 is found to be 8.5 pb at E*≈36 MeV.

14.
Phys Rev Lett ; 104(14): 142502, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20481935

RESUMO

The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes (293)117 and (294)117 were produced in fusion reactions between (48)Ca and (249)Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z > or = 111, validating the concept of the long sought island of enhanced stability for superheavy nuclei.

15.
Rev Sci Instrum ; 79(10): 10E503, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044489

RESUMO

Understanding mix in inertial confinement fusion (ICF) experiments at the National Ignition Facility requires the diagnosis of charged-particle reactions within an imploded target. Radiochemical diagnostics of these reactions are currently under study by scientists at Los Alamos and Lawrence Livermore National Laboratories. Measurement of these reactions requires assay of activated debris and tracer gases from the target. Presented below is an overview of the prompt radiochemistry diagnostic development efforts, including a discussion of the reactions of interest as well as the progress being made to collect and count activated material.

16.
Environ Sci Technol ; 39(8): 2608-15, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15884356

RESUMO

Manganese oxides, present as minor phases in the vadose zone, have been previously shown to sequester large quantities of plutonium under environmental conditions. We are now continuing these studies with Np(V). Sorption onto manganite (MnOOH) and hausmannite (Mn3O4) at solid-to-solution ratios of 2.5-3.3 mg/mL has been studied as a function of neptunium concentration and pH. The sorption of Np increased as a function of pH for both minerals, attaining a maximum at neutral pH, and then decreased with increasing alkalinity. X-ray absorption fine structure spectroscopy (XAFS), taken at the Np L(III)-edge, has been used to determine the oxidation state of the sorbed Np. Our experimental results indicate reduction of the Np(V) because of interaction with the X-ray beam. These findings significantly impact the interpretation of results reported elsewhere on Np(V) investigated though the use of high-intensity X-ray beams.


Assuntos
Poluentes Ambientais , Compostos de Manganês/química , Netúnio/química , Óxidos/química , Interações Medicamentosas , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Minerais/química , Espectrometria por Raios X
17.
Environ Sci Technol ; 37(15): 3367-74, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12966983

RESUMO

The sorption of Pu(VI) onto manganite (MnOOH) and hausmannite (Mn3O4) was studied as a function of time, solution pH, and initial plutonium concentration. Kinetic experiments indicate that the surface complexation of plutonium occurs over the first 24 h of contact with the mineral surface. The sorption increases with pH beginning at pH 3 until it reaches a maximum value of 100% at pH 8 (0.0011-0.84 micromol of Pu/m2 of manganite and 0.98-1.2 micromol of Pu/m2 of hausmannite) and then decreases over the pH range from 8 to 10. The ratio of solid to solution was 10 mg/mL for manganite experiments and 4 mg/mL for hausmannite samples. Carbonate was not excluded from the experiments. The amount of plutonium removed from the solution by the minerals is determined by a combination of factors including the plutonium solution species, the surface charge of the mineral, and the mineral surface area. X-ray absorption fine structure taken at the Pu L(III) edge were compared to plutonium standard spectra and showed that Pu(VI) was reduced to Pu(IV) after contact with the minerals. Plutonium sorption to the mineral surface is consistent with an inner-sphere configuration, and no evidence of PuO2 precipitation is observed. The reduction and complexation of Pu(VI) by manganese minerals has direct implications on possible migration of Pu(VI) species in the environment.


Assuntos
Compostos de Manganês/química , Óxidos/química , Plutônio/química , Adsorção , Precipitação Química , Poluentes Ambientais , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...