Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 427(6 Pt B): 1513-1534, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25284753

RESUMO

The ability of antibodies to bind an antigen with a high degree of affinity and specificity has led them to become the largest and fastest growing class of therapeutic proteins. Clearly identifying the epitope at which they bind their cognate antigen provides insight into their mechanism of action and helps differentiate antibodies that bind the same antigen. Here, we describe a method to precisely and efficiently map the epitopes of a panel of antibodies in parallel over the course of several weeks. This method relies on the combination of rational library design, quantitative yeast surface display and next-generation DNA sequencing and was demonstrated by mapping the epitopes of several antibodies that neutralize alpha toxin from Staphylococcus aureus. The accuracy of this method was confirmed by comparing the results to the co-crystal structure of one antibody and alpha toxin and was further refined by the inclusion of a lower-affinity variant of the antibody. In addition, this method produced quantitative insight into the epitope residues most critical for the antibody-antigen interaction and enabled the relative affinities of each antibody toward alpha toxin variants to be estimated. This affinity estimate serves as a predictor of neutralizing antibody potency and was used to anticipate the ability of each antibody to effectively bind and neutralize naturally occurring alpha toxin variants secreted by strains of S. aureus, including clinically relevant strains. Ultimately this type information can be used to help select the best clinical candidate among a set of antibodies against a given antigen.


Assuntos
Anticorpos Monoclonais/imunologia , Toxinas Bacterianas/imunologia , Epitopos/análise , Proteínas Hemolisinas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Biblioteca de Peptídeos , Saccharomyces cerevisiae/imunologia , Infecções Estafilocócicas/prevenção & controle , Sequência de Aminoácidos , Anticorpos Monoclonais/genética , Toxinas Bacterianas/genética , Mapeamento de Epitopos/métodos , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Citometria de Fluxo , Proteínas Hemolisinas/genética , Humanos , Dados de Sequência Molecular , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia
2.
J Mol Biol ; 425(10): 1641-54, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23416200

RESUMO

The emergence and spread of multi-drug-resistant strains of Staphylococcus aureus in hospitals and in the community emphasize the urgency for the development of novel therapeutic interventions. Our approach was to evaluate the potential of harnessing the human immune system to guide the development of novel therapeutics. We explored the role of preexisting antibodies against S. aureus α-hemolysin in the serum of human individuals by isolating and characterizing one antibody with a remarkably high affinity to α-hemolysin. The antibody provided protection in S. aureus pneumonia, skin, and bacteremia mouse models of infection and also showed therapeutic efficacy when dosed up to 18 h post-infection in the pneumonia model. Additionally, in pneumonia and bacteremia animal models, the therapeutic efficacy of the α-hemolysin antibody appeared additive to the antibiotic linezolid. To better understand the mechanism of action of this isolated antibody, we solved the crystal structure of the α-hemolysin:antibody complex. To our knowledge, this is the first report of the crystal structure of the α-hemolysin monomer. The structure of the complex shows that the antibody binds α-hemolysin between the cap and the rim domains. In combination with biochemical data, the structure suggests that the antibody neutralizes the activity of the toxin by preventing binding to the plasma membrane of susceptible host cells. The data presented here suggest that protective antibodies directed against S. aureus molecules exist in some individuals and that such antibodies have a therapeutic potential either alone or in combination with antibiotics.


Assuntos
Anticorpos Antibacterianos/administração & dosagem , Anticorpos Antibacterianos/uso terapêutico , Complexo Antígeno-Anticorpo/administração & dosagem , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/imunologia , Proteínas Hemolisinas/antagonistas & inibidores , Proteínas Hemolisinas/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/farmacologia , Anticorpos Bloqueadores/sangue , Anticorpos Bloqueadores/química , Anticorpos Bloqueadores/uso terapêutico , Complexo Antígeno-Anticorpo/química , Reações Antígeno-Anticorpo/imunologia , Toxinas Bacterianas/química , Cristalografia por Raios X , Modelos Animais de Doenças , Feminino , Proteínas Hemolisinas/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína , Infecções Estafilocócicas/sangue , Staphylococcus aureus/patogenicidade
3.
Cell Microbiol ; 9(7): 1695-704, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17346313

RESUMO

Three proteins secreted by Listeria monocytogenes facilitate escape from macrophage vacuoles: the cholesterol-dependent cytolysin listeriolysin O (LLO), a phosphoinositide-specific phospholipase C (PI-PLC) and a broad-range phospholipase C (PC-PLC). LLO and PI-PLC can activate several members of the protein kinase C (PKC) family during infection. PKCepsilon is a novel PKC that contributes to macrophage activation, defence against bacterial infection, and phagocytosis; however, a role for PKCepsilon in Lm infections has not been described. To study PKCepsilon dynamics, PKCepsilon-YFP chimeras were visualized in macrophages during Lm infection. PKCepsilon-YFP was recruited to forming vacuoles during macrophage phagocytosis of Lm and again later to fully formed Lm vacuoles. The PKCepsilon-YFP localization to the fully formed Lm vacuole was LLO-dependent but independent of PI-PLC or PC-PLC. PKCepsilon-YFP recruitment often followed LLO perforation of the membrane, as indicated by localization of PKCepsilon-YFP to Lm vacuoles after they released small fluorescent dyes into the cytoplasm. PKCepsilon-YFP recruitment to vesicles also followed phagocytosis of LLO-containing liposomes or osmotic lysis of endocytic vesicles, indicating that vacuole perforation by LLO was the chief cause of the PKCepsilon response. These studies implicate PKCepsilon in a cellular mechanism for recognizing damaged membranous organelles, including the disrupted vacuoles created when Lm escapes into cytoplasm.


Assuntos
Listeria monocytogenes/patogenicidade , Macrófagos/enzimologia , Macrófagos/microbiologia , Proteína Quinase C-épsilon/metabolismo , Vacúolos/enzimologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Linhagem Celular , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/toxicidade , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/imunologia , Macrófagos/ultraestrutura , Camundongos , Microscopia de Fluorescência , Proteína Quinase C-épsilon/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Front Biosci ; 12: 2683-92, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127272

RESUMO

Macrophage activation often contributes to the strong immune response elicited upon infection. The ability of macrophages to become activated was discovered when sub-lethal primary infections of mice with the bacterium Listeria monocytogenes provided protection against secondary infections through non-humoral immunity. L. monocytogenes infect and propagate in macrophages by escaping the phagosome into the cytosol, where they avoid humoral immune mediators. Activated macrophages kill L. monocytogenes by blocking phagosomal escape. The timing of the antimicrobial activities within the phagosome is crucial to the outcome. In non-activated macrophages, bacterial factors generally prevail, and L. monocytogenes can escape from the vacuoles and grow within cytoplasm. Activated macrophages generate reactive oxygen or nitrogen intermediates early after bacterial uptake, which prevent the bacteria from escaping vacuoles into cytoplasm. The heterogeneity in the interactions between L. monocytogenes and the macrophage indicate a complex relationship between the host and the pathogen governed by chemistries that promote and inhibit escape from vacuoles. This review examines the mechanisms used by activated and non-activated macrophages to kill microbes, and how those mechanisms are employed against L. monocytogenes.


Assuntos
Listeriose/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Animais , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Macrófagos/microbiologia , Camundongos , Fagocitose , Vacúolos/microbiologia
5.
Infect Immun ; 74(7): 3756-64, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16790747

RESUMO

Several models of anthrax pathogenesis suggest that early in the infectious process Bacillus anthracis endospores germinate and outgrow into vegetative bacilli within phagocytes before being released into the blood. Here, we define the respective contributions of three phospholipases C (PLCs) to the pathogenesis of B. anthracis. Genetic deletions of the PLCs were made in the Sterne 7702 background, resulting in the respective loss of their activities. The PLCs were redundant both in tissue culture and in murine models of anthrax. Deletion of all three PLC genes was required for attenuation of virulence in mice after intratracheal inoculation. This attenuation may be attributed to the inability of the PLC-null strain to grow in association with the macrophage. Complementation of these defects in both models of anthrax was achieved by expression of the PLC genes in trans. The functional redundancy between PLCs in the virulence of B. anthracis implies that their activities are important for anthrax pathogenesis.


Assuntos
Antraz/enzimologia , Antraz/microbiologia , Bacillus anthracis/enzimologia , Bacillus anthracis/crescimento & desenvolvimento , Macrófagos/microbiologia , Fosfolipases Tipo C/fisiologia , Animais , Bacillus anthracis/patogenicidade , Células da Medula Óssea/microbiologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , Intubação Intratraqueal , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Fosfolipases Tipo C/genética , Virulência
6.
Cell Microbiol ; 8(5): 781-92, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611227

RESUMO

Listeria monocytogenes (Lm) evade microbicidal defences inside macrophages by secreting a pore-forming cytolysin listeriolysin O (LLO), which allows Lm to escape vacuoles. LLO also inhibits Lm vacuole fusion with lysosomes, which indicates LLO alters vacuole chemistry prior to release of Lm into cytoplasm. Using fluorescent probes to measure membrane permeability, calcium and pH, we identified small membrane perforations in vacuoles containing wild-type but not LLO-deficient (hly-) Lm. The small membrane perforations released small fluorescent molecules and persisted for several minutes before expanding to allow exchange of larger fluorescent molecules. Macropinosomes and hly- Lm vacuoles acidified and increased their calcium content ([Ca2+]vac) within minutes of formation; however, the small perforations made by LLO-expressing bacteria increased vacuolar pH and decreased [Ca2+]vac shortly after infection. Experimental increases in vacuolar pH inhibited Lm vacuole fusion with lysosomes. The timing of perforation indicated that LLO-dependent delays of Lm vacuole maturation result from disruption of ion gradients across vacuolar membranes.


Assuntos
Cálcio/fisiologia , Membranas Intracelulares/microbiologia , Listeria monocytogenes/metabolismo , Vacúolos/fisiologia , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular , Corantes Fluorescentes , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas , Concentração de Íons de Hidrogênio , Membranas Intracelulares/fisiologia , Listeria monocytogenes/genética , Lisossomos/fisiologia , Macrófagos/microbiologia , Macrófagos/fisiologia , Fusão de Membrana , Camundongos , Permeabilidade
7.
Cell Microbiol ; 8(1): 107-19, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16367870

RESUMO

The bacterial pathogen Listeria monocytogenes (Lm) evades the antimicrobial mechanisms of macrophages by escaping from vacuoles to the cytosol, through the action of the cytolysin listeriolysin O (LLO). Because of heterogeneities in the timing and efficiency of escape, important questions about the contributions of LLO to Lm vacuole identity and trafficking have been inaccessible. Expression of cyan fluorescent protein (CFP)-labelled endocytic membrane markers in macrophages along with a yellow fluorescent protein (YFP)-labelled indicator of Lm entry to the cytosol identified compartments lysed by bacteria. Lm escaped from Rab5a-negative, lysosome-associated membrane protein-1 (LAMP1)-negative, Rab7-positive, phosphatidylinositol 3-phosphate [PI(3)P]-positive vacuoles. Lm vacuoles did not label with YFP-Rab5a unless the bacteria were first opsonized with IgG. Wild-type Lm delayed vacuole fusion with LAMP1-positive lysosomes, relative to LLO-deficient Lm. Bacteria prevented from expressing LLO until their arrival into LAMP1-positive lysosomes escaped inefficiently. Thus, the LLO-dependent delay of Lm vacuole fusion with lysosomes affords Lm a competitive edge against macrophage defences by providing bacteria more time in organelles they can penetrate.


Assuntos
Proteínas de Choque Térmico/fisiologia , Listeria monocytogenes/fisiologia , Macrófagos/fisiologia , Vacúolos/fisiologia , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas , Compartimento Celular , Citosol/metabolismo , Endopeptidases/genética , Proteínas de Fluorescência Verde/genética , Proteínas Hemolisinas , Membranas Intracelulares/metabolismo , Listeria monocytogenes/metabolismo , Proteínas Luminescentes/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/microbiologia , Lisossomos/fisiologia , Macrófagos/microbiologia , Camundongos , Microscopia de Fluorescência , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vacúolos/microbiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...