Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 43(21): 1608-1619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565943

RESUMO

Cancer cells employ adaptive mechanisms to survive various stressors, including genotoxic drugs. Understanding the factors promoting survival is crucial for developing effective treatments. In this study, we unveil a previously unexplored long non-coding RNA, JUNI (JUN-DT, LINC01135), which is upregulated by genotoxic drugs through the activation of stress-activated MAPKs, JNK, and p38 and consequently exerts positive control over the expression of its adjacent gene product c-Jun, a well-known oncoprotein, which transduces signals to multiple transcriptional outputs. JUNI regulates cellular migration and has a crucial role in conferring cellular resistance to chemotherapeutic drugs or UV radiation. Depletion of JUNI markedly increases the sensitivity of cultured cells and spheroids to chemotherapeutic agents. We identified 57 proteins interacting with JUNI. The activity of one of them the MAPK phosphatase and inhibitor, DUSP14, is counteracted by JUNI, thereby, facilitating efficient JNK phosphorylation and c-Jun induction when cells are exposed to UV radiation. The antagonistic interplay with DUSP14 contributes not only to c-Jun induction but also augments the survival of UV-exposed cells. In summary, we introduce JUNI as a novel stress-inducible regulator of c-Jun, positioning it as a potential target for enhancing the sensitivity of cancer cells to chemotherapy.


Assuntos
Movimento Celular , Sobrevivência Celular , Fosfatases de Especificidade Dupla , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Movimento Celular/genética , Sobrevivência Celular/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Linhagem Celular Tumoral , Raios Ultravioleta/efeitos adversos , Sistema de Sinalização das MAP Quinases/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
2.
Genome Biol Evol ; 6(10): 2634-46, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25245407

RESUMO

Transcription of mitochondrial DNA (mtDNA)-encoded genes is thought to be regulated by a handful of dedicated transcription factors (TFs), suggesting that mtDNA genes are separately regulated from the nucleus. However, several TFs, with known nuclear activities, were found to bind mtDNA and regulate mitochondrial transcription. Additionally, mtDNA transcriptional regulatory elements, which were proved important in vitro, were harbored by a deletion that normally segregated among healthy individuals. Hence, mtDNA transcriptional regulation is more complex than once thought. Here, by analyzing ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) data, we identified strong binding sites of three bona fide nuclear TFs (c-Jun, Jun-D, and CEBPb) within human mtDNA protein-coding genes. We validated the binding of two TFs by ChIP-quantitative polymerase chain reaction (c-Jun and Jun-D) and showed their mitochondrial localization by electron microscopy and subcellular fractionation. As a step toward investigating the functionality of these TF-binding sites (TFBS), we assessed signatures of selection. By analyzing 9,868 human mtDNA sequences encompassing all major global populations, we recorded genetic variants in tips and nodes of mtDNA phylogeny within the TFBS. We next calculated the effects of variants on binding motif prediction scores. Finally, the mtDNA variation pattern in predicted TFBS, occurring within ChIP-seq negative-binding sites, was compared with ChIP-seq positive-TFBS (CPR). Motifs within CPRs of c-Jun, Jun-D, and CEBPb harbored either only tip variants or their nodal variants retained high motif prediction scores. This reflects negative selection within mtDNA CPRs, thus supporting their functionality. Hence, human mtDNA-coding sequences may have dual roles, namely coding for genes yet possibly also possessing regulatory potential.


Assuntos
DNA Mitocondrial/metabolismo , Fatores de Transcrição/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Imunoprecipitação da Cromatina , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo
3.
Cell Cycle ; 12(22): 3547-54, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24091628

RESUMO

Fbxw7 is a tumor suppressor mutated in a wide range of human cancers. It serves as the substrate recognition component of SCF E3 ubiquitin ligases, and intensive effort was made to identify its substrates. Some of the substrates are central regulators of the cell cycle, cell fate determination, and cellular survival. Unlike the many efforts aimed at identifying novel targets, little is known about the regulation of Fbw7 isoform expression. In this study, we examined the mRNA expression of different FBXW7 isoforms during the cell cycle and after exposure to various stress stimuli. We observed that Fbw7ß is induced by all the stress stimuli tested, mostly, but not exclusively, in a p53-dependent manner. In fact, FBXW7ß was found to be the most potently induced p53 target gene in HCT-116 cells. Expression of FBXWα and γ is p53-independent and their responsiveness to most stress stimuli is limited. Furthermore, their pattern of stress responsiveness is very different from that of the ß isoform. Under certain conditions, the same genotoxic agent stimulates induction of ß and repression of α. Analysis of FACS-sorted cells in specific phases of the cell cycle by using fluorescent ubiquitination-based cell cycle indicator (FUCCI), showed a significant repression of the γ isoform during the S phase of normal cycling HCT-116 cells. Altogether, this study suggests differential regulation of the 3 Fbw7 isoforms.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Estresse Fisiológico , Ubiquitina-Proteína Ligases/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Dano ao DNA , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Células HCT116 , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
EMBO J ; 30(1): 221-31, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21113130

RESUMO

Two major arms of the inflammatory response are the NF-κB and c-Jun N-terminal kinase (JNK) pathways. Here, we show that enteropathogenic Escherichia coli (EPEC) employs the type III secretion system to target these two signalling arms by injecting host cells with two effector proteins, NleC and NleD. We provide evidence that NleC and NleD are Zn-dependent endopeptidases that specifically clip and inactivate RelA (p65) and JNK, respectively, thus blocking NF-κB and AP-1 activation. We show that NleC and NleD co-operate and complement other EPEC effectors in accomplishing maximal inhibition of IL-8 secretion. This is a remarkable example of a pathogen using multiple effectors to manipulate systematically the host inflammatory response signalling network.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Interações Hospedeiro-Patógeno , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , NF-kappa B/imunologia , Apoptose , Escherichia coli Enteropatogênica/imunologia , Proteínas de Escherichia coli/genética , Expressão Gênica , Células HeLa , Humanos , Interleucina-8/genética , Interleucina-8/imunologia , Proteína Quinase 9 Ativada por Mitógeno/imunologia , Fator de Transcrição RelA/imunologia , Transcrição Gênica , Fator de Necrose Tumoral alfa/imunologia
5.
J Cell Sci ; 123(Pt 14): 2423-33, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20571051

RESUMO

Tight control of p63 protein levels must be achieved under differentiation or apoptotic conditions. Here, we describe a new regulatory pathway for the DeltaNp63alpha protein. We found that MDM2 binds DeltaNp63alpha in the nucleus promoting its translocation to the cytoplasm. The MDM2 nuclear localization signal is required for DeltaNp63alpha nuclear export and subsequent degradation, whereas the MDM2 ring-finger domain is dispensable. Once exported to the cytoplasm by MDM2, p63 is targeted for degradation by the Fbw7 E3-ubiquitin ligase. Efficient degradation of DeltaNp63alpha by Fbw7 (also known as FBXW7) requires GSK3 kinase activity. By deletion and point mutations analysis we have identified a phosphodegron located in the alpha and beta tail of p63 that is required for degradation. Furthermore, we show that MDM2 or Fbw7 depletion inhibits degradation of endogenous DeltaNp63alpha in cells exposed to UV irradiation, adriamycin and upon keratinocyte differentiation. Our findings suggest that following DNA damage and cellular differentiation MDM2 and Fbw7 can cooperate to regulate the levels of the pro-proliferative DeltaNp63alpha protein.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/efeitos da radiação , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Dano ao DNA/genética , Doxorrubicina/farmacologia , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Humanos , Camundongos , Mutação/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Interferente Pequeno/genética , Transativadores/genética , Fatores de Transcrição , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Raios Ultravioleta/efeitos adversos
6.
Autophagy ; 6(4): 566-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20404571

RESUMO

Starvation induces a vigorous autophagic response to enhance cellular survival, whereas nutrient and serum supplementation inhibit autophagy and induce an intensive transcriptional burst that enables cellular proliferation. We recently found that some of the genes induced by serum and growth factors--the immediate early proteins JunB and c-Jun--inhibit autophagy. Deregulation of JunB expression when autophagy is specifically required, tilts the fate of starved cells to apoptosis.


Assuntos
Apoptose , Autofagia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Modelos Biológicos , Multimerização Proteica/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
7.
PLoS Biol ; 8(3): e1000328, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20231875

RESUMO

In eukaryotes, fumarase (FH in human) is a well-known tricarboxylic-acid-cycle enzyme in the mitochondrial matrix. However, conserved from yeast to humans is a cytosolic isoenzyme of fumarase whose function in this compartment remains obscure. A few years ago, FH was surprisingly shown to underlie a tumor susceptibility syndrome, Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC). A biallelic inactivation of FH has been detected in almost all HLRCC tumors, and therefore FH was suggested to function as a tumor suppressor. Recently it was suggested that FH inhibition leads to elevated intracellular fumarate, which in turn acts as a competitive inhibitor of HPH (HIF prolyl hydroxylase), thereby causing stabilization of HIF (Hypoxia-inducible factor) by preventing proteasomal degradation. The transcription factor HIF increases the expression of angiogenesis regulated genes, such as VEGF, which can lead to high microvessel density and tumorigenesis. Yet this mechanism does not fully explain the large cytosolic population of fumarase molecules. We constructed a yeast strain in which fumarase is localized exclusively to mitochondria. This led to the discovery that the yeast cytosolic fumarase plays a key role in the protection of cells from DNA damage, particularly from DNA double-strand breaks. We show that the cytosolic fumarase is a member of the DNA damage response that is recruited from the cytosol to the nucleus upon DNA damage induction. This function of fumarase depends on its enzymatic activity, and its absence in cells can be complemented by high concentrations of fumaric acid. Our findings suggest that fumarase and fumaric acid are critical elements of the DNA damage response, which underlies the tumor suppressor role of fumarase in human cells and which is most probably HIF independent. This study shows an exciting crosstalk between primary metabolism and the DNA damage response, thereby providing a scenario for metabolic control of tumor propagation.


Assuntos
Núcleo Celular/metabolismo , Citosol/metabolismo , Dano ao DNA , Fumarato Hidratase/metabolismo , Isoenzimas/metabolismo , Mitocôndrias/enzimologia , Fumarato Hidratase/genética , Fumaratos/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoenzimas/genética , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Leiomiomatose/enzimologia , Leiomiomatose/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Cancer Res ; 70(6): 2318-27, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20197466

RESUMO

The growing number of biological functions affected by autophagy ascribes a special significance to identification of factors regulating it. The activator protein-1 (AP-1) transcription factors are involved in most aspects of cellular proliferation, death, or survival, yet no information regarding their involvement in autophagy is available. Here, we show that the AP-1 proteins JunB and c-Jun, but not JunD, c-Fos, or Fra-1, inhibit autophagy. JunB inhibits autophagy induced by starvation, overexpression of a short form of ARF (smARF), a potent inducer of autophagy, or even after rapamycin treatment. In agreement, acute repression of JunB expression, by JunB knockdown, potently induces autophagy. As expected from autophagy-inhibiting proteins, Jun B and c-Jun expression is reduced by starvation. Decrease in JunB mRNA expression and posttranscriptional events downregulate JunB protein expression after starvation. The inhibition of autophagy by JunB is not mediated by mammalian target of rapamycin (mTOR) regulation, as it occurs also in the absence of mTOR activity, and autophagy induced by JunB knockdown is not correlated with changes in mTOR activity. Nevertheless, the transcriptional activities of c-Jun and JunB are required for autophagy inhibition, and JunB incapable of heterodimerizing is a less effective inhibitor of autophagy. Most importantly, inhibition of autophagy in starved HeLa cells by JunB enhances apoptotic cell death. We suggest that JunB and c-Jun are regulators of autophagy whose expression responds to autophagy-inducing signals.


Assuntos
Autofagia/fisiologia , Proteínas Proto-Oncogênicas c-jun/fisiologia , Animais , Regulação para Baixo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Serina-Treonina Quinases TOR , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/fisiologia , Transcrição Gênica
9.
Cell Signal ; 22(6): 894-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20060892

RESUMO

Since its discovery more than two decades ago the involvement of the Activating protein 1 (AP-1) in proliferation, inflammation, differentiation, apoptosis, cellular migration and wound healing has been intensively studied. A model based on the early studies suggested antagonistic roles for the Jun proteins in proliferation and transformation. c-Jun was suggested to enhance transformation whereas JunB suggested to inhibit it in an antagonistic manner. Surprisingly, despite accumulation of data obtained from animal models regarding the role of Jun proteins in cancer and identification of oncogenic pathways regulating them, their involvement in human cancer was not demonstrated until recently. Here, we will describe the current knowledge about the roles of Jun proteins in human neoplasia. We will focus on the pathological examples demonstrating that the initial dogma has to be reexamined. For example, like c-Jun, JunB seems to play an oncogenic role in lymphomas, particularly in Hodgkin's lympomas. Furthermore, unlike the antagonistic activities of c-Jun and JunB in the transcription of genes coding for major cell cycle regulators such as CyclinD or p16INK4A, the transcription of other cell cycle regulating genes is modified similarly by c-Jun or JunB. Interestingly, some of these genes such as the ones coding for CyclinA or p19(ARF) are important players in either positive or negative regulation of cellular proliferation and survival. Finally, we will also discuss results posing JNK, known so far as the major activator of c-Jun, as a negative regulator of c-Jun level and activity. These recent findings suggest that the role of each Jun protein in neoplasia as well as in cellular survival should be examined in a context-dependent manner.


Assuntos
Neoplasias/etiologia , Proteínas Proto-Oncogênicas c-jun/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Transformação Celular Neoplásica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo
10.
Cancer Res ; 68(5): 1398-406, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18316603

RESUMO

The dynamic behavior of the nucleolus plays a role in the detection of and response to DNA damage of cells. Two nucleolar proteins, p14(ARF)/p19(ARF) and B23, were shown to translocate out of the nucleolus after exposure of cells to DNA-damaging agents. This translocation affects multiple cellular functions, such as DNA repair, proliferation, and survival. In this study, we identify a pathway and scrutinize the mechanisms leading to the translocation of these proteins after exposure of cells to DNA-damaging agents. We show that redistribution of B23 and p19(ARF) after the exposure to genotoxic stress occurs preferentially when the c-Jun-NH(2)-kinase (JNK) pathway is activated and is inhibited when the JNK pathway is impaired. The stress-induced translocation of alternative reading frame (ARF) is JNK dependent and mediated by two activator proteins, c-Jun and JunB. Thr(91) and Thr(93) of c-Jun are required for the translocation, but the transcriptional activity of c-Jun is dispensable. Instead, c-Jun interacts with B23 in a dose-dependent manner. c-Jun itself is excluded from the nucleolus in a JNK-dependent manner. Hence, we suggest that c-Jun translocates B23 and ARF from the nucleolus after JNK activation by means of protein interactions. In senescent cells, JNK activity and c-Jun levels are reduced concomitantly with ARF nucleolar accumulation, and UV radiation does not cause the translocation of ARF.


Assuntos
Nucléolo Celular/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Senescência Celular , Humanos , MAP Quinase Quinase 4/metabolismo , Modelos Biológicos , Nucleofosmina , Fosforilação , Transporte Proteico , Treonina/metabolismo , Raios Ultravioleta
11.
Cell Signal ; 20(5): 862-71, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18295447

RESUMO

UV radiation is a major environmental carcinogen. The oncoprotein c-Jun that is required for development of skin cancer is stabilized by UV radiation. The mechanism leading to its stabilization after exposure to UV is not known. The lack of knowledge was particularly sharpened, after the discovery that JNK, the most potent positive regulator of c-Jun, activates Itch, an E3-ligase of c-Jun and JunB. In this study we demonstrate that the expression of all three E3 ubiquitin ligases of c-Jun is down-regulated by UV. The levels of Itch/AIP4 and Fbw7alpha transcripts are reduced following UV exposure in every cell line examined. Repression of hCOP1 and its associated protein hDET1, which is required for c-Jun degradation, is cell type dependent. Expression of Fbw7alpha is down-regulated by UVC or UVB, independently of the p53, MAPK and the PKC pathways but the repression is inhibited in the absence of active Fbw7 proteins suggesting that a target protein of Fbw7 is involved in Fbw7 expression/repression. The repression does not require protein synthesis and UV does not change Fbw7 mRNA stability. The characteristics of Fbw7alpha repression perfectly match with those of c-Jun induction. Unlike UV, ionizing radiation does not repress Fbw7alpha and does not induce c-Jun. In addition, the repression kinetics correlates tightly with the kinetics of c-Jun induction by UV. Moreover, abrogation of Fbw7 UV-responsiveness abolishes c-Jun induction by UV, and knockdown of Fbw7 results in elevated basal expression of c-Jun but reduced UV-dependent induction thus, proving the essential role of this repression in c-Jun induction by UV.


Assuntos
Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-jun/efeitos da radiação , Estabilidade de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos da radiação , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta
12.
J Biol Chem ; 281(45): 34475-83, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16966326

RESUMO

The drug hydroxyurea (HU) is used for cancer therapy and treatment of sickle cell anemia. It inhibits cell cycle progression by blocking DNA synthesis and drives cells to undergo apoptosis or enter senescence. We demonstrate here that HU induces the expression of two AP-1 proteins, c-Jun and JunB, which exert antagonistic effects on the cell cycle. Moreover, the induction of c-Jun is observed following treatment with two other drugs that inhibit the cell cycle in S phase, aphidicolin and camptothecin. The induction of c-Jun, which promotes cell cycle progression, up-regulates expression of cyclin D after exposure of cells to HU. Deficiency in c-jun prevents elevation of cyclin D expression and extends entrance into HU-induced senescence but also renders cells more resistant to HU-dependent apoptosis. The induction of c-Jun is independent of JNK activity, and additionally, of c-Jun autoregulatory activity but is inhibited upon inhibition of protein kinase C activity. Therefore, we suggest that c-Jun activity prevents drug-induced senescence. Conversely, the JunB target gene, tumor suppressor p16(INK4a), a cyclin-dependent kinase inhibitor essential for the induction of drug-induced senescence, is also up-regulated by HU in a JunB-dependent manner. Constitutive expression of JunB up-regulates p16(INK4a) and increases the sensitivity of mouse fibroblasts to drug-induced-senescence. Thus, we suggest that in contrast to c-Jun, JunB drives cells to enter HU-dependent senescence. The effect of HU treatment, which regulates the intricate web of AP-1 transcription, depends on the balance between c-Jun and JunB activities.


Assuntos
Envelhecimento/efeitos dos fármacos , Antineoplásicos/farmacologia , Hidroxiureia/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética , Fator de Transcrição AP-1/genética , Envelhecimento/fisiologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/efeitos dos fármacos
13.
Nat Cell Biol ; 4(5): E131-6, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11988758

RESUMO

The transcription factor AP-1 (activator protein-1) is involved in cellular proliferation, transformation and death. Using mice and cells lacking AP-1 components, the target-genes and molecular mechanisms mediating these processes were recently identified. Interestingly, the growth-promoting activity of c-Jun is mediated by repression of tumour suppressors, as well as upregulation of positive cell cycle regulators. Mostly, c-Jun is a positive regulator of cell proliferation, whereas JunB has the converse effect. The intricate relationships between the different Jun proteins, their activities and the mechanisms that mediate them will be discussed.


Assuntos
Apoptose/fisiologia , Divisão Celular/fisiologia , Transformação Celular Neoplásica , Fator de Transcrição AP-1/metabolismo , Animais , Sobrevivência Celular/fisiologia , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Transcrição AP-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...