Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 368(1624): 20120481, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23836787

RESUMO

The rapidly warming temperatures in high-latitude and alpine regions have the potential to alter the phenology of Arctic and alpine plants, affecting processes ranging from food webs to ecosystem trace gas fluxes. The International Tundra Experiment (ITEX) was initiated in 1990 to evaluate the effects of expected rapid changes in temperature on tundra plant phenology, growth and community changes using experimental warming. Here, we used the ITEX control data to test the phenological responses to background temperature variation across sites spanning latitudinal and moisture gradients. The dataset overall did not show an advance in phenology; instead, temperature variability during the years sampled and an absence of warming at some sites resulted in mixed responses. Phenological transitions of high Arctic plants clearly occurred at lower heat sum thresholds than those of low Arctic and alpine plants. However, sensitivity to temperature change was similar among plants from the different climate zones. Plants of different communities and growth forms differed for some phenological responses. Heat sums associated with flowering and greening appear to have increased over time. These results point to a complex suite of changes in plant communities and ecosystem function in high latitudes and elevations as the climate warms.


Assuntos
Mudança Climática , Ecossistema , Desenvolvimento Vegetal , Plantas/classificação , Regiões Árticas , Flores/crescimento & desenvolvimento , Internacionalidade , Modelos Biológicos , Folhas de Planta , Estações do Ano , Fatores de Tempo
2.
Philos Trans R Soc Lond B Biol Sci ; 368(1624): 20120485, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23836790

RESUMO

Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic.


Assuntos
Dióxido de Carbono , Ecossistema , Plantas/metabolismo , Ar , Regiões Árticas , Modelos Biológicos , Folhas de Planta/metabolismo , Solo , Temperatura
3.
Plant Cell Environ ; 30(10): 1205-15, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17727412

RESUMO

Water vapour and CO2 exchange were measured in moss-dominated vegetation using a gas analyser and a 0.3 x 0.3 m chamber at 17 sites near Abisko, Northern Sweden and 21 sites near Longyearbyen, Svalbard, to quantify the contribution of mosses to ecosystem level fluxes. With the help of a simple light-response model, we showed that the moss contribution to ecosystem carbon uptake varied between 14 and 96%, with an average contribution of around 60%. This moss contribution could be related to the normalized difference vegetation index (NDVI) of the vegetation and the leaf area index (LAI) of the vascular plants. NDVI was a good predictor of gross primary production (GPP) of mosses and of the whole ecosystem, across different moss species, vegetation types and two different latitudes. NDVI was also correlated with thickness of the active green moss layer. Mosses played an important role in water exchange. They are expected to be most important to gas exchange during spring when leaves are not fully developed.


Assuntos
Briófitas/metabolismo , Carbono/metabolismo , Ecossistema , Água/metabolismo , Regiões Árticas , Modelos Biológicos , Fótons , Fotossíntese , Solo , Temperatura
4.
Oecologia ; 108(4): 737-748, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28307809

RESUMO

We examined the importance of temperature (7°C or 15°C) and soil moisture regime (saturated or field capacity) on the carbon (C) balance of arctic tussock tundra microcosms (intact blocks of soil and vegetation) in growth chambers over an 81-day simulated growing season. We measured gaseous CO2 exchanges, methane (CH4) emissions, and dissolved C losses on intact blocks of tussock (Eriophorum vaginatum) and intertussock (moss-dominated). We hypothesized that under increased temperature and/or enhanced drainage, C losses from ecosystem respiration (CO2 respired by plants and heterotrophs) would exceed gains from gross photosynthesis causing tussock tundra to become a net source of C to the atmosphere. The field capacity moisture regime caused a decrease in net CO2 storage (NEP) in tussock tundra micrososms. This resulted from a stimulation of ecosystem respiration (probably mostly microbial) with enhanced drainage, rather than a decrease in gross photosynthesis. Elevated temperature alone had no effect on NEP because CO2 losses from increased ecosystem respiration at elevated temperature were compensated by increased CO2 uptake (gross photosynthesis). Although CO2 losses from ecosystem respiration were primarily limited by drainage, CH4 emissions, in contrast, were dependent on temperature. Furthermore, substantial dissolved C losses, especially organic C, and important microhabitat differences must be considered in estimating C balance for the tussock tundra system. As much as ∼ 20% of total C fixed in photosynthesis was lost as dissolved organic C. Tussocks stored ∼ 2x more C and emitted 5x more methane than intertussocks. In spite of the limitations of this microcosm experiment, this study has further elucidated the critical role of soil moisture regime and dissolved C losses in regulating net C balance of arctic tussock tundra.

5.
Oecologia ; 79(3): 412-6, 1989 May.
Artigo em Inglês | MEDLINE | ID: mdl-23921408

RESUMO

Alders (Alnus crispa) in shrub tundra in northern Alaska showed significant regularity of spacing. Removal of neighboring alder shrubs stimulated nutrient accumulation and growth of remaining alders but did not stimulate nutrient accumulation or growth of any other shrub species. This demonstrates that neighboring alders competed with one another and that, when alders were removed, the resources made available were used preferentially by remaining alders rather than by the community in general. Neither patterns of seedling establishment nor patterns of frostrelated features could explain the regular distribution of alder. We suggest that regular patterns of plant distribution are restricted to sites of low-resource availability, because in these habitats (1) there is strong competition for a scarce resource, and (2) there are only one or a few dominant species to compete for these resources in a given canopy height or rooting depth.

6.
Oecologia ; 77(4): 506-514, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28311270

RESUMO

In a survey of 28 plant species of 6 major growth forms from Alaskan tundra, we found no consistent difference among growth forms in the chemical nature of stored reserves except for lichens and mosses (which stored C primarily as polysaccharides) and shrubs (which tended to store C more as sugars than as polysaccharides). Forbs and graminoids showed particularly great diversity in the chemical nature of stored reserves. In contrast, C, N, and P chemistry of leaves was strikingly similar among all species and growth forms. Concentrations of stored reserves of C, N, and P were highest and showed greatest seasonal fluctuations in forbs and graminoids but were relatively constant in evergreen shrubs. From this information, we draw three general conclusions: (1) the photosynthetic function of leaves strongly constrains leaf chemistry so that similar chemical composition is found in all species and growth forms: (2) the chemical nature of storage reserves is highly variable, both within and among growth forms; (3) the concentration and seasonal pattern of storage reserves are closely linked to growth-form and reflect growth-form differences in woodiness, phenology, and relative dependence upon concurrent uptake vs. storage in support of growth.

7.
Science ; 223(4636): 540, 1984 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-17749918
8.
Science ; 222(4628): 1081-6, 1983 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-17747369

RESUMO

A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1860 and 1980 was between 135 x 10(15) and 228 x 10(15) grams. Between 1.8 x 10(15) and 4.7 x 10(15) grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the release from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 x 10(15) grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed.

9.
Science ; 209(4454): 385, 1980 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-17747809
10.
Oecologia ; 28(1): 57-65, 1977 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28309688

RESUMO

Effects of soil temperature and daylength on root elongation of Carex aquatilis, Dupontia fischeri, and Eriophorum angustifolium were studied under both field and phytotron conditions. Late season decrease in root elongation rate and cessation of root elongation in Dupontia and Eriophorum are shown to be controlled by decreasing daylength. During the growing season, low temperature is not a direct factor in limiting root growth in any of the three species despite the presence of permafrost and low soil temperatures in the shallow thawed soil layer. In the phytotron, temperature-dependence of root elongation is related to experimental conditions characterized by continuous light. Plants of all three species are capable of root growth at near-freezing temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...