Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 661: 75-85, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30665134

RESUMO

Nitrogen fertilization contributes significantly to crop production globally. However, low efficiency application management approaches lead to substantial N losses of which ammonia and nitrous oxide are known as environmental threats. Urea, the largest N fertilization source globally, is associated with high ammonia losses. A large variety of application modes are practiced under different environmental conditions worldwide. Yet, the complexity of N-processes in different soils, under changing agro-environmental conditions, challenges the evaluation of fertilization approaches efficiency in reducing N-gaseous losses. In this research a simply designed static incubation cell was connected to a Long-Path gas cell and a Fourier Transform IR spectrometer (LP-FTIR), allowing online determination of ammonia and nitrous oxide emissions in parallel to tracking mineral N-dynamics in soil samples. The static chamber was used to evaluate different application approaches of urea (i.e., incorporation or surface application with or without wetting) in a Sandy Loam and to compare surface applied regular urea vs. urea amended with the urease inhibitors NPPT+NBPT [N-(n-butyl) thiophosphoric triamide and N-(n-propyl) thiophosphoric triamide, respectively] in four different representative soils. Ammonia emissions peaked few days after application, where highest losses were observed for surface application mode. Highest emissions, up to 5% (w/w) of applied Urea-N, were obtained with the lighter and more basic soils (Sandy Loam and Loess; pH > 7.9). Nitrous oxide emissions showed a lag period of ~1 week and were higher under lower urea application rates, and when nitrification was faster (~1-1.3% (w/w) of applied N). Urease inhibitors significantly reduced ammonia losses in all tested soils and particularly in the Sandy Loam and Loess. Their effect on nitrous oxide losses were observed with the Sandy Loam and particularly after 2 weeks. The static system may underestimate realistic ammonia losses, but it offers a rather simply operated system, providing information about N-gaseous losses for improving N-fertilization management.

2.
Sci Rep ; 7(1): 15429, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133958

RESUMO

Citrus hydraulic physiology and PIP transcript levels were characterized in heavy (clay) and light (sandy loam) soils with and without treated waste water (TWW) irrigation after a summer irrigation season and at the end of a winter rainy season recovery period. Consistent reductions in clay soils compared to sandy loam were found for fresh water (FW) and TWW irrigation, respectively, in root water uptake, as well as in hydraulic conductivity of whole plant (Ks plant), stem (Ks stem) and root (Ks root). Transcript levels of most PIPs down-regulated following TWW irrigation in both soils, but relative gene expression of three PIPs was significantly higher in summer for sandy soil and FW than for clay soil and TWW; their mRNA levels was significantly correlated to Ks root. A pot experiment, which compared short term influences of saline and TWW found that both treatments, compared to FW, reduced root water uptake and PIPs mRNA levels by 2-fold after 20 days, and the decreases continued with time until the end of the experiment. These latter data indicated that salinity had an important influence. Our results suggest that plant hydraulic adjustment to soil texture and water quality occurs rapidly, i.e. within days, and is modulated by PIPs expression.


Assuntos
Irrigação Agrícola/métodos , Aquaporinas/metabolismo , Citrus/fisiologia , Argila/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Regulação para Baixo , Condutividade Elétrica , Água Doce/química , Chuva , Salinidade , Águas Residuárias/química , Qualidade da Água
3.
Tree Physiol ; 36(6): 770-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27022106

RESUMO

Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.


Assuntos
Citrus/metabolismo , Águas Residuárias , Pressão Osmótica/fisiologia , Solo
4.
Physiol Plant ; 156(4): 478-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26497166

RESUMO

Water quality, soil and climate can interact to limit photosynthesis and to increase photooxidative damage in sensitive plants. This research compared diffusive and non-diffusive limitations to photosynthesis as well as photorespiration of leaves of grapefruit trees in heavy clay and sandy soils having a previous history of treated wastewater (TWW) irrigation for >10 years, with different water qualities [fresh water (FW) vs TWW and sodium amended treated wastewater (TWW + Na)] in two arid climates (summer vs winter) and in orchard and lysimeter experiments. TWW irrigation increased salts (Na(+) and Cl(-) ), membrane leakage, proline and soluble sugar content, and decreased osmotic potentials in leaves of all experiments. Reduced leaf growth and higher stomatal and non-stomatal (i.e. mesophyll) limitations were found in summer and on clay soil for TWW and TWW + Na treatments in comparison to winter, sandy soil and FW irrigation, respectively. Stomatal closure, lower chlorophyll content and altered Rubisco activity are probable causes of higher limitations. On the other hand, non-photochemical quenching, an alternative energy dissipation pathway, was only influenced by water quality, independent of soil type and season. Furthermore, light and CO2 response curves were investigated for other possible causes of higher non-stomatal limitation. A higher proportion of non-cyclic electrons were directed to the O2 dependent pathway, and a higher proportion of electrons were diverted to photorespiration in summer than in winter. In conclusion, both diffusive and non-diffusive limitations contribute to the lower photosynthetic performance of leaves following TWW irrigation, and the response depends on soil type and environmental factors.


Assuntos
Adaptação Fisiológica , Citrus/fisiologia , Sódio/farmacologia , Solo/química , Irrigação Agrícola , Respiração Celular , Clorofila/metabolismo , Citrus/efeitos dos fármacos , Citrus/efeitos da radiação , Clima , Luz , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal , Estações do Ano , Árvores , Águas Residuárias/química
5.
Environ Sci Technol ; 44(19): 7583-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20831152

RESUMO

The isotopic signature of oxygen in phosphate (δ(18)O(P)) of various soil fractions may shed light on P transformations, including phosphorus (P) recycling by soil microorganisms, uptake by plants and P adsorption, precipitation and release by oxides and minerals, thus increasing our understanding on P cycling and lability in soils. We developed and tested a protocol to extract and purify inorganic phosphate (Pi) from different soil fractions distinguished by binding strength and precipitate it as silver phosphate (Ag(3)PO(4)) for δ(18)O(P) analysis. Soil P is extracted sequentially using water, NaHCO(3), NaOH and HCl and Pi in each solution is purified and precipitated as Ag(3)PO(4). The unique characteristics and possible interferences of the soil solution extracts are addressed. Two agricultural soil samples receiving reclaimed wastewater or fresh water were analyzed, and results indicate that all soil fractions analyzed have been impacted to some degree by biologically enzyme mediated cycling of P in the soil.


Assuntos
Oxigênio/química , Fosfatos/química , Solo/química , Agricultura
6.
Appl Spectrosc ; 63(10): 1168-73, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19843368

RESUMO

Nitrification and mineralization of organic nitrogen (N) are important N transformation processes in soil, and mass spectrometry is a suitable technique for tracing changes of (15)N isotopic species of mineral N and estimating the rates of these processes. However, mass spectrometric methods for tracing N dynamics are costly, time consuming, and require long and laborious preparation procedures. This study investigates mid-infrared attenuated total reflection (ATR) spectroscopy as an alternative method for detecting changes in (14)NO(3)-N and (15)NO(3)-N concentrations. There is a significant shift of the nu(3) absorption band of nitrate according to N species, namely from the 1275 to 1460 cm(-1) region for (14)NO(3)(-) to the 1240-1425 cm(-1) region for (15)NO(3). This shift makes it possible to quantify the N isotopes using multivariate calibration methods. Partial least squares regression (PLSR) models with five factors yielded a determination error of 6.7-9.2 mg N L(-1) for aqueous solutions and 5.9-7.8 mg N kg(-1) (dry soil) for pastes of a Terra rossa soil. These PLSR models were used to monitor the changes of (15)NO(3)-N and (14)NO(3)-N content in the same Terra rossa soil during an incubation experiment in which [(15)NH(4)](2)SO(4) was applied to the soil, allowing the estimation of the contributions of applied N and mineralized N to the net nitrification rate, the potential losses of the applied (15)NH(4)-N, and the net mineralization of soil organic N.

7.
Appl Spectrosc ; 61(10): 1063-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17958956

RESUMO

This study investigates the use of photoacoustic spectroscopy (PAS) for rapid soil analysis. Photoacoustic spectroscopy requires very minimal sample preparation (air-drying), which is a major advantage compared to the more traditional transmittance technique, which requires time-consuming preparation of pellets. The amount of information contained in the PAS spectra appears to be similar to that contained in transmittance spectra, and the PAS spectra exhibit a large number of bands that can be associated with various soil constituents such as quartz, calcium carbonate, and various types of clay. Comparison with attenuated total reflection (ATR) spectra of saturated soil pastes shows that the PAS spectra provide much more information than the ATR spectra due to the strong water bands present in the latter. PAS quantitative analysis of clay, calcium carbonate, and organic matter is presented, with respective determination errors of approximately 12% clay, approximately 5% CaCO(3), and approximately 0.2% organic matter.


Assuntos
Acústica , Algoritmos , Silicatos de Alumínio/análise , Carbonato de Cálcio/análise , Modelos Químicos , Compostos Orgânicos/análise , Quartzo/análise , Solo/análise , Espectrofotometria Infravermelho/métodos , Argila , Simulação por Computador
8.
Appl Spectrosc ; 60(9): 1008-12, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17002826

RESUMO

This study investigates the combined use of an anion exchange membrane and transmittance mid-infrared spectroscopy for determining nitrate concentration in aqueous solutions and soil pastes. The method is based on immersing a small piece (2 cm(2)) of anion exchange membrane into 5 mL of solution or soil paste for 30 minutes, after which the membrane is removed, rinsed, and wiped dry. The absorbance spectrum of the charged membrane is then used to determine the amount of nitrate sorbed on the membrane. At the levels tested, the presence of carbonate or phosphate does not affect the nitrate sorption or the spectrum of the charged membrane in the vicinity of the nitrate band. Sulfate affects the spectrum of the charged membrane but does not prevent nitrate determination. For soil pastes, nitrate sorption is remarkably independent of the soil composition and is not affected by the level of soil constituents such as organic matter, clay, and calcium carbonate. Partial least squares analysis of the membrane spectra shows that there exists a strong correlation between the nitrate charge and the absorbance in the 1000-1070 cm(-1) interval, which includes the v(1) nitrate band located around 1040 cm(-1). The prediction errors range from 0.8 to 2.1 mueq, which, under the specific experimental conditions, corresponds to approximately 2 to 6 ppm N-NO(3)(-) on a solution basis or 2 to 5 mg [N]/kg [dry soil] on a dry soil basis.


Assuntos
Membranas Artificiais , Nitratos/análise , Reagentes de Ligações Cruzadas , Resinas de Troca Iônica , Poliestirenos , Solo/análise , Soluções , Espectrofotometria Infravermelho , Compostos de Vinila , Água/química
9.
Chemosphere ; 61(5): 652-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16219501

RESUMO

The use of mid-infrared attenuated total reflectance (ATR) spectroscopy enables direct measurement of nitrate concentration in soil pastes, but strong interfering absorbance bands due to water and soil constituents limit the accuracy of straightforward determination. Accurate subtraction of the water spectrum improves the correlation between nitrate concentration and its nu3 vibration band around 1350 cm(-1). However, this correlation is soil-dependent, due mostly to varying contents of carbonate, whose absorbance band overlaps the nitrate band. In the present work, a two-stage method is developed: First, the soil type is identified by comparing the "fingerprint" region of the spectrum (800-1200 cm(-1)) to a reference spectral library. In the second stage, nitrate concentration is estimated using the spectrum interval that includes the nitrate band, together with the soil type previously identified. Three methods are compared for estimating nitrate concentration: integration of the nitrate absorbance band, cross-correlation with a reference spectrum, and principal component analysis (PCA) followed by a neural network. When using simple band integration, the use of soil specific calibration curves leads to determination errors ranging from 5.5 to 24 mg[N]/kg[dry soil] for the mineral soils tested. The cross-correlation technique leads to similar results. The combination of soil identification with PCA and neural network modeling improves the predictions, especially for soils containing calcium carbonate. Typical prediction errors for light non-calcareous soils are about 4 mg[N]/kg[dry soil], whereas for soils containing calcium carbonate they range from 6 to 20 mg[N]/kg[dry soil], which is less than four percent of the concentration range investigated.


Assuntos
Monitoramento Ambiental/métodos , Nitratos/análise , Poluentes do Solo/análise , Solo/análise , Silicatos de Alumínio/análise , Carbonato de Cálcio/análise , Argila , Redes Neurais de Computação , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Água/análise
10.
Environ Sci Technol ; 39(11): 4180-8, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15984798

RESUMO

A model of reactive, multi-species diffusion has been developed to describe N transformations in spherical soil aggregates, emphasizing the effects of irrigation with reclaimed wastewater. Oxygen demand for respiratory activity has been shown to promote the establishment of anaerobic conditions. Aggregate size and soil respiration rate were identified as the most significant parameters governing the existence and extent of the anaerobic volume in aggregates. The inclusion of kinetic models describing mineralization, nitrification, and denitrification facilitated the investigation of coupled nitrification/denitrification (CND), subject to O2 availability. N-transformations are shown to be affected by effluent-borne NH4+-N content, in addition to elevated BOD and pH levels. Their incremental contribution to O2 availability has been found to be secondary to respiratory activity. At the aggregate level, significant differences between apparent and gross rates of N-transformations were predicted (e.g., NH4+ oxidation and N2 formation), resulting from diffusive constraints due to aggregate size. With increasing anaerobic volume, the effective nitrification rate determined at the aggregates level decreases until its contribution to nitrification is negligible. It was found that the nitrification process was predominantly limited to aggregates <0.25 cm. Assuming that nitrification is the main source for NO3- formation, denitrification efficiency is predicted to peak in medium-sized aggregates, where aerobic and anaerobic conditions coexist, supporting CND. In effluent-irrigated soils, the predicted NO2- formation rate in small aggregates is enhanced when compared to freshwater-irrigated soils. The difference vanishes with increasing aggregate size as anaerobic NO2- consumption exceeds aerobic NO2- formation due to the coupling of nitrification and denitrification.


Assuntos
Nitratos/metabolismo , Nitritos/metabolismo , Solo , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Aerobiose , Anaerobiose , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Nitratos/química , Nitritos/química , Nitrogênio/química , Nitrogênio/metabolismo , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Tamanho da Partícula , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo
11.
Sci China C Life Sci ; 48 Spec No: 937-47, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16512215

RESUMO

With the huge intensification of agriculture and the increasing awareness to human health and natural resources sustainability, there was a shift towards the development of environmental friendly N application approaches that support sustainable use of land and sustain food production. The effectiveness of such approaches depends on their ability to synchronize plant nitrogen demand with its supply and the ability to apply favored compositions and dosages of N-species. They are also influenced by farming scale and its sophistication, and include the following key concepts: (i) Improved application modes such as split or localized ("depot") application; (ii) use of bio-amendments like nitrification and urease inhibitors and combinations of (i) and (ii); (iii) use of controlled and slow release fertilizers; (iv) Fertigation-fertilization via irrigation systems including fully automated and controlled systems; and (v) precision fertilization in large scale farming systems. The paper describes the approaches and their action mechanisms and examines their agronomic and environmental significance. The relevance of the approaches for different farming scales, levels of agronomic intensification and agro-technical sophistication is examined as well.


Assuntos
Meio Ambiente , Poluição Ambiental , Fertilizantes/estatística & dados numéricos , Nitrogênio , Produtos Agrícolas , Humanos
12.
Sci China C Life Sci ; 48 Suppl 2: 937-47, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20549448

RESUMO

With the huge intensification of agriculture and the increasing awareness to human health and natural resources sustainability, there was a shift towards the development of environmental friendly N application approaches that support sustainable use of land and sustain food production. The effectiveness of such approaches depends on their ability to synchronize plant nitrogen demand with its supply and the ability to apply favored compositions and dosages of N-species. They are also influenced by farming scale and its sophistication, and include the following key concepts: (i) Improved application modes such as split or localized ("depot") application; (ii) use of bio-amendments like nitrification and urease inhibitors and combinations of (i) and (ii); (iii) use of controlled and slow release fertilizers; (iv) Fertigation-fertilization via irrigation systems including fully automated and controlled systems; and (v) precision fertilization in large scale farming systems. The paper describes the approaches and their action mechanisms and examines their agronomic and environmental significance. The relevance of the approaches for different farming scales, levels of agronomic intensification and agro-technical sophistication is examined as well.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Fertilizantes/estatística & dados numéricos , Nitrogênio/química , Automação , Produtos Agrícolas , Meio Ambiente , Poluição Ambiental , Humanos , Irrigação Terapêutica
13.
J Environ Qual ; 33(4): 1440-51, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15254127

RESUMO

The Lower Jordan River is located in the semiarid area of the Jordan Valley, along the border between Israel and Jordan. The implementation of the water sections of the peace treaty between Israel and Jordan and the countries' commitment to improve the ecological sustainability of the river system require a better understanding of the riverine environment. This paper investigates the sources and transformations of nitrogen compounds in the Lower Jordan River by applying a combination of physical, chemical, isotopic, and mathematical techniques. The source waters of the Lower Jordan River contain sewage, which contributes high ammonium loads to the river. Ammonium concentrations decrease from 20 to 0-5 mg N L(-1) along the first 20 km of the Lower Jordan River, while nitrate concentrations increase from nearly zero to 10-15 mg N L(-1), and delta(15)N (NO(3)) values increase from less than 5 per thousand to 15-20 per thousand. Our data analysis indicates that intensive nitrification occurs along the river, between 5 and 12 km from the Sea of Galilee, while further downstream nitrate concentration increases mostly due to an external subsurface water source that enters the river.


Assuntos
Modelos Teóricos , Nitrogênio/metabolismo , Poluentes da Água/metabolismo , Monitoramento Ambiental , Israel , Jordânia , Nitratos/análise , Rios
14.
Appl Spectrosc ; 58(5): 516-20, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15165326

RESUMO

This paper investigates the use of Fourier transform infrared (FTIR) attenuated total reflectance (ATR) spectroscopy as a fast and simple way for direct determination of nitrate concentration in soil pastes, which would assist precision fertilizer placement and reduce nitrate pollution. Eight types of soils are investigated, with nitrate concentrations ranging from 0 to 1000 ppm-N. The spectral region around the nitrate band (1300-1550 cm(-1)) is analyzed by (1) principal component regression (PCR), (2) partial least squares (PLS), and (3) cross-correlation with reference libraries that include spectra of pure ions and/or soils. The main obstacle to accurate nitrate measurement appears to be an interfering band present in calcareous soils. This band, which may be due to carbonate, is located around 1450 cm(-1) and overlaps with the nitrate band centered around 1370 cm(-1). For non-calcareous soils, and in particular for light sandy agricultural soils, PLS and cross-correlation with a reference library containing only spectra of ions in water give similar results (about 8 ppm-N on dry soil basis), while PCR leads to slightly poorer results. When calcareous soils are included in the analysis, the prediction errors are about twice as large. In this case, the best results are obtained using PLS, followed by PCR, while cross-correlation with reference libraries leads to poorer results.


Assuntos
Algoritmos , Monitoramento Ambiental/métodos , Modelos Estatísticos , Nitratos/análise , Nitratos/química , Poluentes do Solo/análise , Solo/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Bases de Dados Factuais/normas , Fertilizantes/análise , Análise dos Mínimos Quadrados , Reconhecimento Automatizado de Padrão , Análise de Componente Principal , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como Assunto
15.
Environ Sci Technol ; 37(10): 2251-6, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12785532

RESUMO

A comprehensive model describing the complex and "non-Fickian" (mathematically nonlinear) nature of the release from single granules of membrane coated, controlled release fertilizers (CRFs) is proposed consisting of three stages: i. a lag period during which water penetrates the coating of the granule dissolving part of the solid fertilizer in it ii. a period of linear release during which water penetration into and release out occur concomitantly while the total volume of the granules remains practically constant; and iii. a period of "decaying release", starting as the concentration inside the granule starts to decrease. A mathematical model was developed based on vapor and nutrient diffusion equations. The model predicts the release stages in terms of measurable geometrical and chemophysical parameters such as the following: the product of granule radius and coating thickness, water and solute permeability, saturation concentration of the fertilizer, and its density. The model successfully predicts the complex and "sigmoidal" pattern of release that is essential for matching plant temporal demand to ensure high agronomic and environmental effectiveness. It also lends itself to more complex statistical formulations which account for the large variability within large populations of coated CRFs and can serve for further improving CRF production and performance.


Assuntos
Fertilizantes/análise , Modelos Teóricos , Polímeros , Difusão , Cinética , Polímeros/química , Soluções , Fatores de Tempo
16.
Environ Sci Technol ; 37(10): 2257-61, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12785533

RESUMO

A statistically based model for describing the release from a population of polymer coated controlled release fertilizer (CRF) granules by the diffusion mechanism was constructed. The model is based on a mathematical-mechanistic description of the release from a single granule of a coated CRF accounting for its complex and nonlinear nature. The large variation within populations of coated CRFs poses the need for a statistically based approach to integrate over the release from the individual granules within a given population for which the distribution and range of granule radii and coating thickness are known. The model was constructed and verified using experimentally determined parameters and release curves of polymer-coated CRFs. A sensitivity analysis indicated the importance of water permeability in controlling the lag period and that of solute permeability in governing the rate of linear release and the total duration of the release. Increasing the mean values of normally distributed granule radii or coating thickness, increases the lag period and the period of linear release. The variation of radii and coating thickness, within realistic ranges, affects the release only when the standard deviation is very large or when water permeability is reduced without affecting solute permeability. The model provides an effective tool for designing and improving agronomic and environmental effectiveness of polymer-coated CRFs.


Assuntos
Fertilizantes/análise , Modelos Estatísticos , Polímeros , Difusão , Cinética , Permeabilidade , Polímeros/química , Soluções
17.
Water Res ; 36(8): 2147-51, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12092590

RESUMO

The effect of CO2 concentration on nitrification rate was studied in a fluidized bed reactor using chalk (solid calcium carbonate) as the biomass carrier and buffering agent. Using one chalk type and uniform particle size, carbon dioxide was found to limit the nitrification rate in the reactor at concentrations up to 0.3 mmol l(-1). At this concentration the nitrification rate was about 2.5-2.7g NH4+-Nl reactor(-1) d(-1). The pH established in the reactor varied between 4.5 and 5.5, remarkably with lower pH obtained remarked at higher nitrification rates. Kinetic parameters for nitrification rate with CO2 as the rate limiting substrate were determined: a Michaelis-Menten constant, Km, of 0.013 mmol l(-1) CO2 and a maximum ammonium oxidation rate of 2.33g NH4+-Nl reactor(-1) d(-1).


Assuntos
Dióxido de Carbono/química , Nitrogênio/metabolismo , Biomassa , Reatores Biológicos , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...