Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Eng Sci Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753284

RESUMO

Plasmonic photothermal therapy (PPTT) involves the use of nanoparticles and near-infrared radiation to attain a temperature above 50 °C within the tumor for its thermal damage. PPTT is largely explored for superficial tumors, and its potential to treat deeper subsurface tumors is dealt feebly, requiring the assessment of thermal damage for such tumors. In this paper, the extent of thermal damage is numerically analyzed for PPTT of invasive ductal carcinoma (IDC) situated at 3-9 mm depths. The developed numerical model is validated with suitable tissue-tumor mimicking phantoms. Tumor (IDC) embedded with gold nanorods (GNRs) is subjected to broadband near-infrared radiation. The effect of various GNRs concentrations and their spatial distributions [viz. uniform distribution, intravenous delivery (peripheral distribution) and intratumoral delivery (localized distribution)] are investigated for thermal damage for subsurface tumors situated at various depths. Results show that lower GNRs concentrations lead to more uniform internal heat generation, eventually resulting in uniform temperature rise. Also, the peripheral distribution of nanoparticles provides a more uniform spatial temperature rise within the tumor. Overall, it is concluded that PPTT has potential to induce thermal damage for subsurface tumors, at depths of upto 9 mm, by proper choice of nanoparticle distribution, dose/concentration and irradiation parameters based on the tumor location. Moreover, intravenous administration of nanoparticles seems a good choice for shallower tumors, while for deeper tumors, uniform distribution is required to attain the necessary thermal damage. In the future, the algorithm may be extended further, involving 3D patient-specific tumors and through mice model-based experiments.

2.
J Therm Biol ; 121: 103859, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38714147

RESUMO

Plasmonic photothermal therapy (PPTT) is a potential technique to treat tumors selectively. However, during PPTT, issue of high temperature region and damage to the surrounding healthy is still need to be resolved. Also, treatment of deeper tumors non-invasively is a challenge for PPTT. In this paper, the effect of periodic irradiation and incident beam radius (relative to tumor size) for various gold nanorods (GNRs) concentrations is investigated to avoid much higher temperatures region with limiting thermal damage to the surrounding healthy tissue during PPTT of subsurface breast tumors located at various depths. Lattice Boltzmann method is used to solve Pennes' bioheat model to compute the resulting photothermal temperatures for the subsurface tumor embedded with GNRs subjected to broadband near infrared radiation of intensity 1 W/cm2. Computation revealed that low GNRs concentration leads to uniform internal heat generation than higher GNRs concentrations. The results show that deeper tumors, due to attenuation of incident radiation, show low temperature rise than shallower tumors. For shallower tumors situated 3 mm deep, 70% irradiation period resulted in around 20 °C reduction (110 °C-90 °C) of maximum temperature than that with the continuous irradiation. Moreover, 70% beam radius (i.e., beam radius as 70% of the tumor radius) causes less thermal damage to the nearby healthy tissue than 100% beam radius (i.e., beam radius equal to the tumor radius). The thermal damage within the healthy tissue is minimized to the 1 mm in radial direction and 3 mm in axial direction for 70% beam radius with 70% irradiation period. Overall, periodic heating and changing beam radius of the incident irradiation lead to reduce high temperature and limit healthy tissue damage. Hence, discussed results are useful for selection of the irradiation parameters for PPTT of sub-surface tumors.


Assuntos
Ouro , Nanotubos , Terapia Fototérmica , Terapia Fototérmica/métodos , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/terapia , Modelos Biológicos , Raios Infravermelhos/uso terapêutico
3.
IEEE Trans Nanobioscience ; 21(4): 482-489, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34623274

RESUMO

Plasmonic photothermal therapy (PPTT), which involves nanoparticles and near-infrared radiation (NIR) to generate confined heat, is a potential technique for selective thermal damage of cancerous tissue. Herein, tumor-selective spatial damage characteristics during polydopamine (PDA) coated gold nano blackbodies (AuNBs) mediated PPTT is investigated through a tumor-tissue mimicking phantom. The spatial temperatures during PPTT were measured within the phantom mimicking the optical scattering of superficial invasive ductal carcinoma (injected with AuNBs) surrounded by a region without AuNBs. The phantom was irradiated using broadband NIR radiation (754-816 nm), and spatial temperatures were measured using thermocouples and an infrared thermal camera. The obtained results demonstrate that the tumor region's temperature was elevated to >50°C in about 2.5 minutes and was maintained thereafter for about 6 minutes, which is well sufficient for the thermal ablation of the tumor. While for the region surrounding the tumor, a temperature of about 40-44°C was attained, which is within safe limits for the said exposure duration. Overall, this study demonstrates that for the considered experimental parameters and tumor dimensions, heat-based thermal damage could be confined to the nanoparticle embedded tumor region while maintaining the safe temperature levels for the surrounding region, i.e., 2 mm beyond the tumor boundary.


Assuntos
Ouro , Neoplasias , Humanos , Indóis , Neoplasias/terapia , Polímeros
4.
J Biomol Struct Dyn ; 34(12): 2561-2580, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26609765

RESUMO

Y-box-binding protein 1 (YB-1), a cold shock domain protein, is one of the most conserved nucleic acid-binding proteins. The multifunctional human YB-1 is a member of a large family of proteins with an evolutionary ancient cold shock domain. The presence of a cold shock domain is a specific feature of Y-box-binding proteins and allows attributing them to a wider group of proteins containing a cold shock domain. This protein is involved in a number of cellular processes including proliferation, differentiation and stress response. The YB-1 performs its function both in the cytoplasm and in the cell nucleus. In this study, we present the structure of full-length human YB-1 protein along with investigation of their nucleic acid-binding preferential. The study also focuses on biases for particular purine and pyrimidine bases. The overall goal of this study was to model and validate full-length YB-1 protein and to compare its nucleic acid-binding studies with previous reports.


Assuntos
Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácidos Nucleicos/química , Proteína 1 de Ligação a Y-Box/química , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Humanos , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Proteína 1 de Ligação a Y-Box/classificação , Proteína 1 de Ligação a Y-Box/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...