Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 19(1): 128-143, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30240114

RESUMO

Microbial communities play an important role in organismal and ecosystem health. While high-throughput metabarcoding has revolutionized the study of bacterial communities, generating comparable viral communities has proven elusive, particularly in wildlife samples where the diversity of viruses and limited quantities of viral nucleic acid present distinctive challenges. Metagenomic sequencing is a promising solution for studying viral communities, but the lack of standardized methods currently precludes comparisons across host taxa or localities. Here, we developed an untargeted shotgun metagenomic sequencing protocol to generate comparable viral communities from noninvasively collected faecal and oropharyngeal swabs. Using samples from common vampire bats (Desmodus rotundus), a key species for virus transmission to humans and domestic animals, we tested how different storage media, nucleic acid extraction procedures and enrichment steps affect viral community detection. Based on finding viral contamination in foetal bovine serum, we recommend storing swabs in RNAlater or another nonbiological medium. We recommend extracting nucleic acid directly from swabs rather than from supernatant or pelleted material, which had undetectable levels of viral RNA. Results from a low-input RNA library preparation protocol suggest that ribosomal RNA depletion and light DNase treatment reduce host and bacterial nucleic acid, and improve virus detection. Finally, applying our approach to twelve pooled samples from seven localities in Peru, we showed that detected viral communities saturated at the attained sequencing depth, allowing unbiased comparisons of viral community composition. Future studies using the methods outlined here will elucidate the determinants of viral communities across host species, environments and time.


Assuntos
Quirópteros/virologia , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Manejo de Espécimes/métodos , Viroses/veterinária , Vírus/classificação , Vírus/genética , Animais , Biodiversidade , Fezes/virologia , Orofaringe/virologia , Peru , Viroses/virologia
2.
Semin Nephrol ; 35(1): 85-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25795502

RESUMO

Acute kidney injury (AKI) occurs frequently in critically ill patients with sepsis, in whom it doubles the mortality rate and half of the survivors suffer permanent kidney damage or chronic kidney disease. Failure in the development of viable therapies has prompted studies to better elucidate the cellular and molecular etiologies of AKI, which have generated novel theories and paradigms for the mechanisms of this disease. These studies have shown multifaceted origins and elements of AKI that, in addition to/in lieu of ischemia, include the generation of damage-associated molecular patterns and pathogen-associated molecular patterns, the inflammatory response, humoral and cellular immune activation, perturbation of microvascular flow and oxidative stress, bioenergetic alterations, cell-cycle alterations, and cellular de-differentiation/re-differentiation. It is becoming clear that a major etiologic effector of all these inputs is the renal tubule epithelial cell (RTEC). This review discusses these elements and their effects on RTECs, and reviews the current hypotheses of how these effects may determine the fate of RTECs during sepsis-induced AKI.


Assuntos
Injúria Renal Aguda/fisiopatologia , Células Epiteliais/metabolismo , Rim/metabolismo , Sepse/fisiopatologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Células Epiteliais/fisiologia , Humanos , Inflamação , Rim/fisiopatologia , Túbulos Renais Distais/citologia , Túbulos Renais Proximais/citologia , Estresse Oxidativo , Sepse/complicações , Sepse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA